A fast parallel Poisson solver for Scrape-Off-Layer

Kab Seok Kang kskang@ipp.mpg.de

High Level Support Team (HLST) Department of Computational Plasma Physics Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstraße 2, D-85748 Garching, Germany

Max-Planck-Institut für Plasmaphysik EURATOM Assoziation

(4) (3) (4) (4) (4)

K. S. Kang (kskang@ipp.mpg.de) DD22: A fast parallel solver

OUTLINE

- Fast parallel solver
 - Multigrid and DDM
 - Parallelization issues
 - Modern HPC
- Model problems
 - Poisson problem
 - Hexagonal domain
 - Scrape-off-Layer
- Numerical experiments
 - Helios
 - Reduced core and OpenMP/MPI hybrid
 - Scaling properties
- Acknowledgements

Multigrid and DDM Parallelization issues Modern HPC

Multigrid method: Idea

 Motivation: Simple iterative method reduces well high frequency error and low frequency error is well approximated by coarser level problem

A Multigrid V-cycle

K. S. Kang (kskang@ipp.mpg.de) DD22: A fast parallel solver

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

э

Multigrid and DDM Parallelization issues Modern HPC

Multigrid method: Properties

- Well-known and well-analyzed fast solver and preconditioner
- The required number of iterations is fixed for many cases

Method	Storage	Flops	Full MG
GE (banded)	n5	n ⁷	g 10 ⁶ - cq -
Gauss-Seidel	n ³	n⁵log n	Optimal SOR
Optima I SOR	n ³	n⁴ log n	Gauss-Seidel
CG	n ³	n ^{3,5} log n	
Full MG	n ³	n ^s	10 ⁰ Banded GE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

- Smoothing operators: On each level
- Prolongations and restrictions: Intergrid transfer operators
- Lowest solver: On lowest level, CGM, GMRES, Direct solver,

Multigrid and DDM Parallelization issues Modern HPC

Domain Decomposition Method: Idea

- Divide sub-domains and solve problems only on it
 - \rightarrow Naturally fit to distributed computers
- Overlapping DDM: Schwarz method
 - Schwarz method: Solve local problems on each sub-domain with Dirichlet BC
 - Multipicative method: Alternatively solve
 - Additive method: Solve local problems on the same time. Simple and mainly use as a precondtioner
- Nonoverlapping methods: Use conditions on boundaries of the sub-domains
 - Neumann-Neumann and Dirichlet-Dirichlet
 - \rightarrow Good for discontinuous or many parts problems
 - BDD, BDDC, FETI, FETI-DP
- Can be used any discretization method, FEM, FVM, and DG.

Multigrid and DDM Parallelization issues Modern HPC

Domain Decomposition Method: Properties

- One-level DDM: Depends on the number of subdomains
 - Large δ : Good condition number, more cost of the data communication
 - Small δ : Minimal data communication cost, similar the block Jacobi iteration, not efficient preconditioner
- Two level DDM: Not depending on the number of subdomains, Only on the ratio of the fine and coarse level meshes
 Overlapping: Need to solve the coarse level problem
 Nonoverlapping: BDDC and FETI-DP
 - Solve level and global searcer problem
 - Solve local and global coarser problem
 - Local (Dirichlet and Neumann): Need to communicate boundary data with neighborhood subdomains
 - Global coarser: Contributions from and uses by all Size of system: according to the number of subdomains (the number of cores) → direct, CGM, Multigrid () → ()

Multigrid and DDM Parallelization issues Modern HPC

Issues

- Lower levels: needs more data communication time
 - in comparison to computing time
 - ightarrow Bottleneck on the parallel computers
 - \rightarrow Use V-cycle scheme as a solver and as a preconditioner
- Gauss-Seidel smoother: Prefered, but hard to parallelize
 → Localize: Perform the Gauss-Seidel iteration exclusively on each core, no data communication between cores in one Gauss-Seidel cycle
- Lowest level solver: depends on the problem
 - Problem size: can be less than the number of cores
 - Single core version is better than parallel version
 - \rightarrow Same as global coarser problem of two-level nonoverlapping DDM
 - Bigger problem size: Need more iterations for iterative methods, such as CGM, GMRES

Multigrid and DDM Parallelization issues Modern HPC

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Parallel multigrid method with reduced cores

- Reduce the number of execution cores on a certain coarser level \rightarrow Use only one core
- Gather data to one core, solve, and scatter to all core
 - \rightarrow Only one core is busy and others idle
- Gather data on each core and solve on every core
 - \rightarrow Don't need scattering step
- Use MPI_Allreduce:

Combine MPI_Reduce and MPI_Bcast

 \rightarrow Better performance depending on the MPI implementation

Multigrid and DDM Parallelization issues Modern HPC

Gathering data algorithm

V-cycle Multigrid Method

Multigrid and DDM Parallelization issues Modern HPC

Domain Decomposition Method as a lowest solver

- DDM: Can be used as a lowest solver of the multigrid method
- Standard problem: the size of the lowest problem might be as small as possible
 - \rightarrow Reduced core algorithm is better
- Many problems have restrictions on the lowest level:
 - irregular shape domain, nonsymmetric problem, ...
 - Need more iterations for iterative method and not fit for direct method
 - \rightarrow DDM might be the better than other method

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Multigrid and DDM Parallelization issues Modern HPC

OpenMP/MPI hybrid: Implementation

- OpenMP: a standard for shared-memory systems
- Launch one process per node \rightarrow Need launch time
- Have each process fork one thread (or maybe more) per core
- Share data using shared memory
- Can't share data with a different processor (node) (except maybe via file I/O)

- Hybridization: Each MPI process to launch multiple OpenMP threads that can share local memory

Multigrid and DDM Parallelization issues Modern HPC

Trends of HPC

- 100 million to 1 billion cores
- Clock rates of 1 to 2 GHz (reduced energy usage): ARM-based (Mont-Blanc project in EU)
- Multi-threaded, fine-grained concurrency of 10- to 100- way concurrency per core (computational accelerator): GPU (OpenACC), MIC (OepnMP), ...
- Hundreds of cores per die: multicore, multisocket
- Active power management: Max 20MW for the computer
- New design: 3D packaging of dies for stacks of four to ten dies, each including DRAM, cores, and networking

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Multigrid and DDM Parallelization issues Modern HPC

Multicore-multisocket CPU and accelerator

- Intel Xeon E5-2692 12C 2.2GHz: Tianhe-2(#1)
 - \rightarrow 2 Sockets (12 cores) = 24 cores per node
- Intel Xeon E5-2680 8C 2.7GHz: Stampede (#6), SuperMUC(#9)
 - \rightarrow 2 Sockets (8 cores) = 16 cores per node
- Opteron 6274 16C 2.200GHz: Titan Cray XK7(#2),
 - \rightarrow 16 cores per node
- Power BQC 16C 1.60 GHz: Sequoia BlueGeneQ(#3), Mira(#5), JUQUEEN(#7), VULCAN(#8)
 - ightarrow 16 cores per node
- SPARC64 VIIIfx 2.0GHz: K computer(#4)
 - \rightarrow 8 cores per node
- Accelerator:
- GPU: NVIDIA K20x(#2), NVIDIA 2050 (Tianhe-1A, #10)
- MIC: Xeon Phi31S1P(Tianhe-2,#1), Xeon PhiSE10P(Stampede,#6)

< ロ > < 圖 > < 圖 > < 필 > .

Poisson Problem Hexagonal domain Scrape-off-Layer

Model problem

Schematic diagram of the PIC method

Computing potentials on each time step: The second order
 PDE problem on a domain with Dirichlet boundary condition

$$\begin{cases} (A - \nabla \cdot B\nabla) \ u = f, & \text{in } \Omega \\ u = 0, & \text{on } \partial\Omega \quad \exists r \in \mathbb{R} \\ \text{K. S. Kang (kskang@ipp.mpg.de)} & DD22: A fast parallel solver \end{cases}$$

Poisson Problem Hexagonal domain Scrape-off-Layer

Purpose

- Solve the 2nd order PDE in Plasma Physics simulation codes for Tokamak experiments
- Solution is sought at each time step \rightarrow less than 0.1 sec

Tokamak	ASDEX	JET	ITER	DEMO
DoF	2M	8M	32M	?

- -Hexagonal domain: For GEMT project (gyrofluid and reduced MHD and gyrokinetic models)
- -Scrape-off-Layer: Prediction of plasma particle and energy loads to the plasma facing components (PFC), estimation of corresponding PFC erosion rates and impurity and dust generation rates

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Poisson Problem Hexagonal domain Scrape-off-Layer

Discretization and parallelization

- Linear Finite element method or Finite volume method
- Triangulation with regular triangles
- Divide a regular hexagonal domain with regular triangular sub-domains
- Limited number of cores: 1, 6, 24, 96, 384, ...
- Determine where the boundary nodes of the sub-domain are included.

Poisson Problem Hexagonal domain Scrape-off-Layer

Communications

Type I: 0,6,9,12,15,18,21,24, ...

Type II: 1, 2, 3, 4, 5, 8, 11, ...

Type III: 7, 10, 13, 16, 19, 22, 25, ...

- Consisted by Real (\bullet) and Ghost (\bigcirc) nodes.
- Classify three types of sub-domains.
- Need five steps for data communication for matrix-vector

K. S. Kang (kskang@ipp.mpg.de) DD22: A fast parallel solver

Poisson Problem Hexagonal domain Scrape-off-Layer

Scarape-off-Layer: domain

・ロト ・四ト ・ヨト ・ヨト

æ

Poisson Problem Hexagonal domain Scrape-off-Layer

Scarape-off-Layer: parallelization

4×4 subdomains, use real and ghost nodes and cells

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Helios Reduced core and hybridization Scaling properties

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

HELIOS

- IFERC: The International Fusion Energy Centre is located at Rokkasho, Japan
 - EU(F4E)–Japan Broader Approach collaboration
- The Computational Simulation Centre (CSC): To exploit large-scale and high performance fusion simulations
- HELIOS: 4410 Bullx B510 Blades, 70,000 cores
 - 1.3 Pflops peak performance
 - No. 20 in Top500, June 2013
 - Xeon E5-2680 8C 2.7 GHz per node
 - Interconnection: Infiniband
 - Upgrade with MIC accelerator

Helios Reduced core and hybridization Scaling properties

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Architecture of node

- Two sockets (8 cores) per node

Helios Reduced core and hybridization Scaling properties

MG with gathering data

Helios Reduced core and hybridization Scaling properties

DDM: # of iterations and weak scaling

	# cores	24	96	384	1536	6144	24576
	levels	4	5	6	7	8	9
	CGM	55	110	213	411	802	1591
1/8	PCGMG	5	5	5	5	5	5
	FETIDP	12	15	16	16	16	16
	BDDC	7	8	8	8	8	8
1/16	FETIDP	14	17	19	20	19	19
	BDDC	8	9	10	10	10	9
1/32	FETIDP	16	20	22	23	23	23
	BDDC	9	11	11	11	11	11
1/64	FETIDP	18	23	24	26	26	26
	BDDC	10	13	13	13	13	13
	levels	8	9	10	11	12	13
	CGM	802	1591	3056	5614	10965	22000
1/128	PCGMG	5	5	5	5	5	5
	FETIDP	12	15	16	16	16	16
	BDDC	7	8	8	8	8	8

Helios Reduced core and hybridization Scaling properties

Comparison as a lowest solvers

Strong scaling

Weak scaling

500K DoF (black), 2M DoF (red)

590 DoF (black), 2200 DoF (red) per core

PCGM (solid), FETI-DP (\bullet), BDDC(+), CGM (\circ)

- FETI-DP and BDDC : better than CGM when the number of cores is large

K.S.Kang(kskang@ipp.mpg.de)

DD22: A fast parallel solver

Helios Reduced core and hybridization Scaling properties

Strong scaling: OpenMP/MPI (3.1M DoF)

K. S. Kang (kskang@ipp.mpg.de) DD22: A fast parallel solver

Helios Reduced core and hybridization Scaling properties

Strong scaling: OpenMP/MPI (12M DoF)

Helios Reduced core and hybridization Scaling properties

Weak scaling

Helios Reduced core and hybridization Scaling properties

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

Conclusion and future works

- Multigrid method with gathering data has been made performance improvement
- Multigrid methgod is the fastest solver in comparison FETI-DP, BDDC, and CGM
- FETI-DP is better scaling property than CGM
 - \rightarrow Might be lowest solver for SOL domain
- Small number of Dof per core and large number of MPI tasks
 Improved the performance by using hybrid OpenMP/MPI
- * Future work
- Implement SOL-domain
- Analyze the performances of Multigrid, FETI-Dp, BDDC and OpenMP/MPI hybridization

Helios Reduced core and hybridization Scaling properties

A (10) + A (10) +

Acknowledgements

This work was carried out using the HELIOS supercomputer system at Computational Simulation Centre of International Fusion Energy Research Centre (IFERC-CSC), Aomori, Japan, under the Broader Approach collaboration between Euratom and Japan, implemented by Fusion for Energy and JAEA. I would like to thank R. Hatzky and other HLST team members, B. Scott, and D. Tskhakaya for helpful discussions.

Thank you for your attention!!