

-22nd International Conference on Domain Decomposition Methods-University of Lugano, Switzerland, September 16–20, 2013

A deluxe FETI-DP algorithm for a hybrid staggered DG formulation of H(curl) in two dimensions

> Hyea Hyun Kim (hhkim@khu.ac.kr) Kyung Hee University, Yongin, Korea.

Collaborator: Eric T. Chung (CUHK)

September 16, 2013

Contents

Contents
DG formulation
FETI-DP Method
Analysis
Numerical results
Summary

□ Hybrid staggered DG formulation

- □ A FETI-DP algorithm with deluxe scaling
- $\hfill\square$ Analysis of condition numbers
- \Box Numerical results

Model problem

Contents DG formulation FETI-DP Method Analysis Numerical results Summary Find $\vec{u} \in H_0(\operatorname{curl}, \Omega)$ such that

$$\nabla \times (\alpha(x)\nabla \times \vec{u}(x)) + \beta(x)\vec{u}(x) = \vec{f}(x) \quad \forall x \in \Omega \subset \mathbb{R}^2,$$

where

 $H_0(\operatorname{curl},\Omega) = \{ \vec{v} \in [L^2(\Omega)]^2 : \nabla \times \vec{v} \in L^2(\Omega), \ \vec{v} \cdot \vec{t} = 0 \text{ on } \partial\Omega \},$ $\alpha(x), \ \beta(x) \ (>0) \text{ can be discontinuous.}$

First order system:

$$q = \alpha(x)\nabla \times \vec{u}(x)$$
$$\nabla \times q + \beta \vec{u}(x) = \vec{f}(x)$$

Contents DG formulation FETI-DP Method Analysis Numerical results Summary

Staggered DG formulation (by Chung and Enquist (2006,2009))

initial triangulation and subdivision

 \mathcal{T} : initial triangulation \mathcal{T}_s : subdivided triangulation \mathcal{F} : black edges \mathcal{F}_u : red edges \mathcal{F}_a : blue edges

 $\mathcal{S}^{h} = \{ \psi : \psi|_{\tau} \in P^{k}(\tau) \,\forall \tau \in \mathcal{T}_{s}, \ [\psi]|_{e} = 0 \,\forall e \in \mathcal{F}_{q} \}.$ $\mathcal{V}^{h} = \{ \vec{v} : \vec{v}|_{\tau} \in [P^{k}(\tau)]^{2} \,\forall \tau \in \mathcal{T}_{s}, \ [\vec{v} \cdot \vec{t}]|_{e} = 0 \,\forall e \in \mathcal{F}_{u} \}.$ Note: Both are decoupled across edges in \mathcal{F} .

Weak formulation

Contents ▷ DG formulation FETI-DP Method Analysis Numerical results Summary ψ in \mathcal{S}_h is locally H^1 -conforming in $\mathcal{R}(e)$ for e in \mathcal{F}_q :

$$q = \alpha(x)\nabla \times \vec{u}(x)$$

$$\int_{\mathcal{R}(e)} \alpha^{-1} q \psi \, dx - \int_{\mathcal{R}(e)} \vec{u} \cdot (\nabla \times \psi) \, dx - \int_{\partial \mathcal{R}(e)} (\vec{u} \cdot \vec{t}_{\tau}) \psi \, d\sigma = 0.$$

Weak formulation

Contents ▷ DG formulation FETI-DP Method Analysis Numerical results Summary \vec{v} in \mathcal{V}_h are locally *H*-curl conforming in $\mathcal{S}(e)$ for e in \mathcal{F}_u :

$$\nabla \times q + \beta \vec{u}(x) = \vec{f}(x)$$

$$\int_{\mathcal{S}(e)} q(\nabla \times \vec{v}) dx - \int_{\partial \mathcal{S}(e)} \mathbf{q}(\vec{v} \cdot \vec{t}_{\tau}) d\sigma + \int_{\mathcal{S}(e)} \beta \vec{u} \cdot \vec{v} dx = \int_{\mathcal{S}(e)} \vec{f} \cdot \vec{v} dx.$$

Hybridization: We will approximate q on e in $\mathcal{F} \cap \partial \mathcal{S}(e)$ by introducing an additional unknown λ .

 \square

Contents ▷ DG formulation FETI-DP Method Analysis Numerical results Summary For edges e in \mathcal{F} , we approximated q with λ .

```
\Box In addition we enforce continuity of \vec{u} \cdot \vec{t},
```

```
[\vec{u} \cdot \vec{t}] = 0, \quad \forall e \in \mathcal{F}
```

weakly by introducing Lagrange multipliers.

Contents ▷ DG formulation FETI-DP Method Analysis Numerical results Summary

$$M_{\alpha^{-1}}q - B^{T}u = 0$$

$$Bq + N_{\beta}u + J^{T}\lambda = 0$$

$$Ju = 0.$$

- \Box q and u are decoupled across edges in the initial triangulation.
- □ No penalty terms due to the hybridization and staggered continuity.
- \Box λ is defined on edges in the initial triangulation. It approximates q and can be interpreted as the Lagrange multipliers to Ju = 0.

Elimination of \boldsymbol{q} and \boldsymbol{u} gives

 $J(BM_{\alpha^{-1}}^{-1}B^{T} + N_{\beta})^{-1}J^{T}\lambda = d.$

Contents DG formulation ▷ FETI-DP Method Analysis Numerical results Summary

We will develop a FETI-DP algorithm for

$$J(BM_{\alpha}^{-1}B^T + N_{\beta})^{-1}J^T\lambda = d.$$

□ Nonoverlapping partition

$$\Omega = \bigcup_i \Omega_i,$$

 Ω_i : a connected union of triangles in the **initial** triangulation \mathcal{T} .

 $\square \quad \text{Assume that } \alpha(x) \text{ and } \beta(x) \text{ are positive constants in } \\ \text{each subdomain } \Omega_i.$

Dirichlet and Neumann problems at a triangle

For a given $u_{\partial \tau}$ on $\partial \tau$ find $(q_{\tau}^{\mathcal{D}}, u_{\tau}^{\mathcal{D}})$ such that

$$\begin{aligned} \alpha_{\tau}^{-1} M_{\tau} q_{\tau}^{\mathcal{D}} - B_{\tau}^{T} u_{\tau}^{\mathcal{D}} &= 0 \\ B_{\tau} q_{\tau}^{\mathcal{D}} + \beta_{\tau} N_{\tau} u_{\tau}^{\mathcal{D}} &= 0 \\ u_{\tau}^{\mathcal{D}} \cdot \vec{t} &= u_{\partial \tau} \text{ on } \partial \tau. \end{aligned}$$

For a given $\lambda_{\partial \tau}$ on $\partial \tau$ find $(q_{\tau}^{\mathcal{N}}, u_{\tau}^{\mathcal{N}})$ such that

$$\alpha_{\tau}^{-1}M_{\tau}q_{\tau}^{\mathcal{N}} - B_{\tau}^{T}u_{\tau}^{\mathcal{N}} = 0$$

$$B_{\tau}q_{\tau}^{\mathcal{N}} + \beta_{\tau}N_{\tau}u_{\tau}^{\mathcal{N}} - J_{\tau}^{T}\boldsymbol{\lambda}_{\partial\tau} = 0.$$

Let

DG formulation ▷ FETI-DP Method Analysis Numerical results Summary

Contents

$$A_{\tau} = \alpha_{\tau} B_{\tau} M_{\tau}^{-1} B_{\tau}^{T} + \beta_{\tau} N_{\tau}.$$

We introduce the Schur complement of A_{τ} :

$$\mathcal{D}_{\partial \tau} = A_{\tau,BB} - A_{\tau,BI} A_{\tau,II}^{-1} A_{\tau,IB}$$

I: interior to τ *B*: dofs on $\partial \tau$)

For the Neumann problem, we observe that

$$u_{\tau}^{\mathcal{N}}|_{\partial\tau} = \mathcal{D}_{\partial\tau}^{-1} J_{\tau}^{T} \lambda_{\partial\tau}$$

and thus our algebric system on λ can be written into

$$\sum_{\tau \in \mathcal{T}} J_{\tau} \mathcal{D}_{\partial \tau}^{-1} J_{\tau}^{T} \lambda = d.$$

Contents DG formulation ▷ FETI-DP Method Analysis Numerical results Summary We introduce

$$\mathcal{N}_i = \sum_{\tau \in \Omega_i \cap \mathcal{T}} J_\tau (\mathcal{D}_{\partial \tau})^{-1} J_\tau^T, \quad \mathcal{D}_i = \sum_{\tau \in \Omega_i \cap \mathcal{T}} R_\tau^T \mathcal{D}_{\partial \tau} R_\tau. \quad (*)$$

The Schur complements of \mathcal{N}_i and \mathcal{D}_i , $S_i^{\mathcal{N}} = \mathcal{N}_{i,\Gamma\Gamma} - \mathcal{N}_{i,\Gamma I} \mathcal{N}_{i,I\Gamma}^{-1} \mathcal{N}_{i,I\Gamma}, \quad S_i^{\mathcal{D}} = \mathcal{D}_{i,\Gamma\Gamma} - \mathcal{D}_{i,\Gamma I} \mathcal{D}_{i,II}^{-1} \mathcal{D}_{i,I\Gamma}.$

(*I*: interior to Ω_i , Γ : dofs on $\partial \Omega_i$)

By the relation in (*),

$$S_i^{\mathcal{N}} = (S_i^{\mathcal{D}})^{-1}.$$

Contents DG formulation > FETI-DP Method Analysis Numerical results Summary After eliminating λ_I interior to each subdomain, we obtain the interface problem on λ_{Γ} ,

$$\sum_{i} J_{\Gamma,i} S_{i}^{\mathcal{N}} J_{\Gamma,i}^{T} \lambda_{\Gamma} = d_{\Gamma}.$$

 $\Box \quad S_i^{\mathcal{N}}: \text{ subdomain problem assembled by Neumann} \\ \text{ problem matrix } \mathcal{D}_{\partial \tau}^{-1}$

 $\square \quad S_i^{\mathcal{D}}: \text{ subdomain problem assembled by Dirichlet problem matrix } \mathcal{D}_{\partial\tau}$

$$S_i^{\mathcal{N}} = (S_i^{\mathcal{D}})^{-1}$$

Contents DG formulation ▷ FETI-DP Method Analysis Numerical results Summary For $\Gamma_{ij} = \partial \Omega_i \bigcap \partial \Omega_j$, we consider a change of basis on $u_{\Gamma_{ij}}$ such that

$$u_{\Gamma_{ij}} = T_{ij} \left(egin{array}{c} \widehat{u}_{\Pi,ij} \\ \widehat{u}_{\Delta,ij} \end{array}
ight),$$
 $\widehat{u}_{\Pi,ij} = rac{\int_{\Gamma_{ij}} \vec{u} \cdot \vec{t} \, ds}{\int_{\Gamma_{ij}} 1 \, ds}, \quad \widehat{u}_{\Delta,ij}: ext{ average free.}$

For $\lambda_{\Gamma_{ij}}$, we introduce the primal unknowns

$$\lambda_{\Gamma_{ij}} = (T_{ij}^T)^{-1} \left(\begin{array}{c} \widehat{\lambda}_{\Pi,ij} \\ \widehat{\lambda}_{\Delta,ij} \end{array} \right).$$

Change of unknowns

Let

Contents

Analysis

Summary

DG formulation

Numerical results

▶ FETI-DP Method

 $T = \operatorname{diag}_{ij} T_{ij}, \quad T_i = \operatorname{diag}_j T_{ij}.$

By the change of unknowns using $(T^T)^{-1}$, (Note that $S_i^{\mathcal{N}} = (S_i^{\mathcal{D}})^{-1}$)

$$\begin{aligned} \mathbf{T}^{-1} \sum_{i} J_{\Gamma,i} S_{i}^{\mathcal{N}} J_{\Gamma,i}^{T} (\mathbf{T}^{T})^{-1} &= \sum_{i} J_{\Gamma,i} T_{i}^{-1} S_{i}^{\mathcal{N}} (T_{i}^{T})^{-1} J_{\Gamma,i}^{T} \\ &= \sum_{i} J_{\Gamma,i} (T_{i}^{T} S_{i}^{\mathcal{D}} T_{i})^{-1} J_{\Gamma,i}^{T}, \end{aligned}$$

the identity relation is thus preserved

$$\sum_{i} J_{\Gamma,i} \widehat{S}_{i}^{\mathcal{N}} J_{\Gamma,i}^{T} = \sum_{i} J_{\Gamma,i} (\widehat{S}_{i}^{\mathcal{D}})^{-1} J_{\Gamma,i}^{T}$$

for $\widehat{S}_i^{\mathcal{N}} = T_i^{-1} S_i^{\mathcal{N}} (T_i^T)^{-1}$, $\widehat{S}_i^{\mathcal{D}} = T_i^T S_i^{\mathcal{D}} T_i$.

Contents

Analysis

Summary

Interface problem DG formulation ▷ FETI-DP Method ~ Numerical results Change of unknowns using $(T^T)^{-1}$ Inverse property \square L

$$\sum_{i} J_{\Gamma,i} S_i^{\mathcal{N}} J_{\Gamma,i}^T \lambda_{\Gamma} = d_{\Gamma}$$

$$\sum_{i} J_{\Gamma,i} \widehat{S}_{i}^{\mathcal{N}} J_{\Gamma,i}^{T} \widehat{\lambda}_{\Gamma} = \widehat{d}_{\Gamma}$$

$$\widehat{S}_i^{\mathcal{N}} = (\widehat{S}_i^{\mathcal{D}})^{-1}$$

for the transformed local problems

$$\widehat{S}_i^{\mathcal{N}} = T_i^{-1} S_i^{\mathcal{N}} (T_i^T)^{-1}, \quad \widehat{S}_i^{\mathcal{D}} = T_i^T S_i^{\mathcal{D}} T_i.$$

L

Contents DG formulation > FETI-DP Method Analysis Numerical results Summary

.et
$$\widehat{\lambda}_{\Gamma}=\left(egin{array}{c} \lambda_{\Pi}\ \lambda_{\Delta}\end{array}
ight)$$
 . We order the interface problem into

$$\sum_{i} J_{\Gamma,i} \widehat{S}_{i}^{\mathcal{N}} J_{\Gamma,i}^{T} \widehat{\lambda}_{\Gamma} = \begin{pmatrix} F_{\Pi\Pi} & F_{\Pi\Delta} \\ F_{\Delta\Pi} & F_{\Delta\Delta} \end{pmatrix} \begin{pmatrix} \lambda_{\Pi} \\ \lambda_{\Delta} \end{pmatrix}$$

and eliminate λ_{Π} to obtain

$$F_{DP}\lambda_{\Delta} = d_{\Delta},$$

where

$$F_{DP} = F_{\Delta\Delta} - F_{\Delta\Pi} F_{\Pi\Pi}^{-1} F_{\Pi\Delta}.$$

Note that $F_{\Pi\Pi}$ is the coarse component of our algorithm.

Contents DG formulation > FETI-DP Method Analysis Numerical results Summary We solve

$$F_{DP}\lambda_{\Delta} = d_{\Delta}$$

with a preconditioner M^{-1} . For the ordered matrix $\widehat{S}_{i}^{\mathcal{N}} = \begin{pmatrix} \widehat{S}_{\Pi\Pi}^{\mathcal{N},i} & \widehat{S}_{\Pi\Delta}^{\mathcal{N},i} \\ \widehat{S}_{\Delta\Pi}^{\mathcal{N},i} & \widehat{S}_{\Delta\Delta}^{\mathcal{N},i} \end{pmatrix}$, we have $F_{\Pi\Pi} = \sum_{i} J_{\Pi,i} \widehat{S}_{\Pi\Pi}^{\mathcal{N},i} J_{\Pi,i}^{T}$ $F_{\Pi\Delta} = \sum_{i}^{i} J_{\Pi,i} \widehat{S}_{\Pi\Delta}^{\mathcal{N},i} J_{\Delta,i}^{T}$ $F_{\Delta\Pi} = F_{\Pi\Delta}^{T}$ $F_{\Delta\Delta} = \sum_{i}^{i} J_{\Delta,i} \widehat{S}_{\Delta\Delta}^{\mathcal{N},i} J_{\Delta,i}^{T}$.

The calculation of $F_{DP}\lambda_{\Delta}$ can be done by solving local problems and one coarse problem.

Preconditioner

Contents DG formulation > FETI-DP Method Analysis Numerical results Summary

From the ordered matrix, $\widehat{S}_{i}^{\mathcal{D}} = \begin{pmatrix} \widehat{S}_{\Pi\Pi}^{\mathcal{D},i} & \widehat{S}_{\Pi\Delta}^{\mathcal{D},i} \\ \widehat{S}_{\Delta\Pi}^{\mathcal{D},i} & \widehat{S}_{\Delta\Delta}^{\mathcal{D},i} \end{pmatrix}$, we define the weight factor $D_{\Delta,i}$, (Dohrmann, Widlund (2013) DD20 Proceedings) $D_{\Delta,i}|_{F} = (S_{F}^{(i)} + S_{F}^{(j)})^{-1}S_{F}^{(j)}, \quad D_{\Delta,j}|_{F} = (S_{F}^{(i)} + S_{F}^{(j)})^{-1}S_{F}^{(i)},$ with $S_{F}^{(i)}$ is the block matix of $\widehat{S}_{\Delta\Delta}^{\mathcal{D},i}$ to the unknowns in $F = \partial \Omega_{i} \bigcap \partial \Omega_{j}.$

The preconditioner consists of solving local problems and then weighted assembly,

$$M^{-1} = \sum_{i} J_{\Delta,i}^{T} D_{\Delta,i}^{T} \widehat{S}_{\Delta\Delta}^{\mathcal{D},i} D_{\Delta,i} J_{\Delta,i}.$$

Contents DG formulation FETI-DP Method Analysis Numerical results Summary

For
$$u_{\Gamma} = \begin{pmatrix} u_{\Pi} \\ u_{\Delta} \end{pmatrix}$$
, we introduce a partially coupled space

W which consists of u_{Γ} coupled at the primal unknowns u_{Π} . We subassemble local matrices $\widehat{S}^{\mathcal{D},i}$ at the primal unknowns to obtain a matrix defined on \widetilde{W} ,

$$\widetilde{S}^{\mathcal{D}} = \begin{pmatrix} \widetilde{S}^{\mathcal{D}}_{\Pi\Pi} & \widetilde{S}^{\mathcal{D}}_{\Pi\Delta} \\ \widetilde{S}^{\mathcal{D}}_{\Delta\Pi} & \widetilde{S}^{\mathcal{D}}_{\Delta\Delta} \end{pmatrix}, \ \widetilde{D} = \begin{pmatrix} 0 & 0 \\ 0 & D_{\Delta\Delta} \end{pmatrix}, \ \widetilde{J}^{T} = \begin{pmatrix} 0 \\ J^{T}_{\Delta} \end{pmatrix}$$

Using them, we obtain

$$F_{DP} = \widetilde{J}(\widetilde{S}^{\mathcal{D}})^{-1}\widetilde{J}^T$$

and

$$M^{-1} = \widetilde{J}\widetilde{D}^T\widetilde{S}^{\mathcal{D}}\widetilde{D}\widetilde{J}^T.$$

 \square

Contents DG formulation FETI-DP Method Analysis Numerical results Summary Using the representation

 $F_{DP} = \widetilde{J}(\widetilde{S}^{\mathcal{D}})^{-1}\widetilde{J}^{T}, \quad M^{-1} = \widetilde{J}\widetilde{D}^{T}\widetilde{S}^{\mathcal{D}}\widetilde{D}\widetilde{J}^{T}$

and following the standard FETI-DP analysis we obtain the lower bound bounded below by one.

 $\hfill\square$ For the upper bound, we need to estimate

 $\|P_D\|_{\widetilde{S}^{\mathcal{D}}}^2$

where

 $P_D = \widetilde{D}\widetilde{J}\widetilde{J}^T.$

Estimate for $||P_D||^2_{\widetilde{SD}}$

Contents DG formulation FETI-DP Method ▷ Analysis Numerical results Summary Lemma 1. Using the deluxe scaling, we obtain

$$\langle \widetilde{S}^{\mathcal{D}} P_D \widetilde{w}, P_D \widetilde{w} \rangle \leq C \sum_i \sum_{F \subset \Omega_i} \langle S_F^{(i)} w_{\Delta,F}^{(i)}, w_{\Delta,F}^{(i)} \rangle.$$

Lemma 2. (Oh, Widlund, Dohrmann (2013)) For $w^{(i)}$ we obtain that

$$\langle S_F^{(i)} w_{\Delta,F}^{(i)}, w_{\Delta,F}^{(i)} \rangle \le C \left(1 + \log \frac{H}{h} \right)^2 \langle \widehat{S}^{\mathcal{D},i} w^{(i)}, w^{(i)} \rangle,$$

where C is independent of α_i and β_i . By the above two lemmas, we obtain that

$$\|P_D\|_{\widetilde{S}^{\mathcal{D}}}^2 \le C\left(1 + \log\frac{H}{h}\right)^2$$

Contents DG formulation FETI-DP Method Analysis ▷ Numerical results Summary

$\hfill\square$ Ω : a unit square domain

- $\square \quad N_d: \text{ number of subdomains} \\ \text{Note: uniform subdomain partitions}$
- \Box H/h: numer of triangles across each subdomain
- $\Box \quad \mathcal{S}^{h}, \mathcal{V}^{h}: \ (k = 0) \text{ piecewise constant,} \\ (k = 1) \text{ piecewise linear}$
- \Box Stop condition: relative residual norm (< 10⁻⁶)

Contents DG formulation FETI-DP Method Analysis

▷ Numerical results

Summary

	\mathcal{V}^h with $k=0$							
H/h	lter	$\lambda_{ m min}$	$\lambda_{ m max}$	$\ \vec{u} - \vec{u}_h\ _0$	order			
1	6	1.00	1.22	6.4163e-1				
2	8	1.00	1.62	3.2335e-1	0.99			
4	9	1.00	2.18	1.6169e-1	1.00			
8	11	1.00	2.88	8.0745e-2	1.00			
16	12	1.00	3.71	4.0333e-2	1.00			

			\mathcal{V}^h wit	h $k = 1$	
H/h	lter	$\lambda_{ m min}$	$\lambda_{ m max}$	$\ \vec{u} - \vec{u}_h\ _0$	order
1	8	1.00	1.81	2.1260e-1	
2	10	1.00	2.47	5.7665e-2	1.88
4	11	1.00	3.26	1.4978e-2	1.94
8	13	1.00	4.17	3.8133e-3	1.97
16	16	1.00	5.63	9.6176e-4	1.99

Contents DG formulation FETI-DP Method Analysis

 \triangleright Numerical results

Summary

	\mathcal{V}^h with $k=0$						
N_d	Iter	$\lambda_{ m min}$	$\lambda_{ m max}$	$\ \vec{u} - \vec{u}_h\ _0$	order		
4^{2}	9	1.00	2.18	1.6169e-1			
8^{2}	13	1.00	2.58	8.0745e-2	1.00		
16^{2}	13	1.00	2.73	4.0333e-2	1.00		
32^{2}	14	1.00	2.77	2.0154e-2	1.00		

		\mathcal{V}^h with $k=1$						
N_d	lter	$\lambda_{ m min}$	$\lambda_{ m max}$	$\ \vec{u} - \vec{u}_h\ _0$	order			
4^2	11	1.00	3.26	1.4978e-2				
8^{2}	17	1.00	3.89	3.8133e-3	1.97			
16^{2}	18	1.00	4.10	9.6176e-4	1.99			
32^{2}	19	1.00	4.18	2.4148e-5	1.99			

Model with discontinuous $\alpha(x)$

Contents DG formulation FETI-DP Method Analysis ▷ Numerical results Summary

black:
$$(\alpha_b, \beta_b) = (\alpha_i, 1)$$

white: $(\alpha_w, \beta_w) = (1, 1)$
 \mathcal{V}^h with $k = 1$

	H/h = 2		H/h = 4		H/h = 8		H/h = 16	
$lpha_i$	Iter	Cond	lter	Cond	lter	Cond	lter	Cond
10^{-3}	13	2.16	16	2.87	18	3.75	20	4.77
10^{-2}	13	2.46	16	3.26	18	4.20	22	5.27
10^{-1}	13	2.63	15	3.48	17	4.46	20	5.58
1	12	2.66	14	3.51	16	4.50	20	5.63
10^{1}	12	2.66	14	3.51	16	4.51	20	5.63
10^{2}	12	2.66	15	3.52	16	4.51	20	5.63
10^{3}	12	2.66	15	3.52	16	4.51	21	5.63

Model with discontinuous $\beta(x)$

Contents DG formulation FETI-DP Method Analysis ▷ Numerical results Summary

black: $(\alpha_b, \beta_b) = (1, \beta_i)$ white: $(\alpha_w, \beta_w) = (1, 1)$ \mathcal{V}^h with k = 1

	H/h = 2		H/h = 4		H/h = 8		H/h = 16	
β_i	lter	Cond	lter	Cond	lter	Cond	lter	Cond
10^{-3}	5	1.01	5	1.01	6	1.02	6	1.02
10^{-2}	7	1.07	7	1.11	8	1.16	9	1.21
10^{-1}	10	1.61	11	1.92	13	2.27	15	2.68
1	12	2.66	14	3.51	16	4.50	20	5.63
10^{1}	9	1.57	11	1.87	12	2.22	13	2.62
10^{2}	5	1.07	6	1.10	7	1.15	8	1.20
10^{3}	4	1.01	4	1.02	5	1.02	5	1.03

Contents DG formulation FETI-DP Method Analysis ▷ Numerical results Summary

 \square

$$N_d = 4^2$$
, \mathcal{V}^h with $k = 1$
 $\alpha_i = 10^{r_i}, \beta_i = 10^{s_i}$ by choosing r_i and s_i randomly from $(-3, 3)$

	H/h = 2		H/h = 4		H/h = 8		H/h = 16	
	lter	Cond	lter	Cond	lter	Cond	lter	Cond
Set 1	12	2.35	14	3.05	16	3.86	23	4.79
Set 2	12	2.10	14	2.69	16	3.38	21	4.17
Set 3	13	2.48	17	3.30	18	4.26	26	5.37
Set 4	12	1.97	14	2.50	15	3.12	19	3.83
Set 5	13	2.56	15	3.38	17	4.34	21	5.44

Summary

Contents
DG formulation
FETI-DP Method
Analysis
Numerical results
\triangleright Summary

- □ A new hybrid staggered DG formulation with the optimal error bound
- $\hfill \hfill \hfill$
- □ Local problems are assembled by Dirichlet and Neumann problems at the triangle level.
- \Box **Coarse problem** by the change of unknowns on λ
- Preconditioner with the deluxe scaling is robust to the jump of two parameters.
- The algorithm and analysis can be applied to any algebraic system arising from hybridizable DG methods.

The end

Contents DG formulation FETI-DP Method Analysis Numerical results Summary

Thank you!