Schwarz Preconditioner for the Stochastic Finite Element Method

Waad Subber

Joint work with Sébastien Loisel

The NAIS Project Department of Mathematics Heriot-Watt University

Introduction

- Motivation
 - High resolution numerical model
 - effectively reduces discretization error.
 - does not necessarily enhance confidence in prediction.
 - The effect of uncertainty need to be considered for realistic computer predictions.
- Objective
 - Develop parallel algorithms to quantify uncertainty in large-scale computational models.
- Methodology
 - Exploit domain decomposition methods in the spatial direction in conjunction with a functional expansion along the stochastic dimension.

Uncertainty Propagation and Data Assimilation

Model Equation

$$\mathbf{u}_{k+1} = \boldsymbol{\psi}_k \left(\mathbf{u}_k, \mathbf{f}_k, \mathbf{q}_k \right) - -$$
 Forecast Step

Measurement Equation

$$\mathbf{d}_k = \mathbf{h}_k \left(\mathbf{u}_k, \boldsymbol{\epsilon}_k \right) \qquad -- \text{Assimilation Step}$$

Uncertainty Propagation

Traditional Monte Carlo Simulation

- Non-intrusive to legacy code
- Embarrassingly parallel yet computationally expensive

Polynomial Chaos Expansion

- Intrusive or non-intrusive
- Computationally efficient
- Multiscale representation of uncertainty

Stochastic Elliptic PDE

• Find a random function $u(\mathbf{x}, \theta) : D \times \Omega \to \mathbb{R}$ satisfying the following equation in an almost surely sense:

$$\nabla \cdot (\kappa(\mathbf{x}, \theta) \nabla u(\mathbf{x}, \theta)) = f(\mathbf{x}), \quad \text{in} \quad D \times \Omega,$$
$$u(\mathbf{x}, \theta) = 0, \quad \text{on} \quad \partial D \times \Omega,$$

 $0 < \kappa_{min} \le \kappa(\mathbf{x}, \theta) \le \kappa_{max} < +\infty, \text{ in } D \times \Omega.$

Stochastic Elliptic PDE

• Find a random function $u(\mathbf{x}, \theta) : D \times \Omega \to \mathbb{R}$ satisfying the following equation in an almost surely sense:

$$\begin{aligned} \nabla \cdot (\kappa(\mathbf{x},\theta) \nabla u(\mathbf{x},\theta)) &= f(\mathbf{x}), & \text{in} \quad D \times \Omega, \\ u(\mathbf{x},\theta) &= 0, & \text{on} \quad \partial D \times \Omega, \end{aligned}$$

 $0 < \kappa_{min} \le \kappa(\mathbf{x}, \theta) \le \kappa_{max} < +\infty, \text{ in } D \times \Omega.$

• Possible realizations of $\kappa(\mathbf{x}, \theta)$:

Uncertainty Representation by Stochastic Processes

Karhunen-Loeve Expansion (KLE)

$$\kappa(\mathbf{x}, \theta) = \bar{\kappa}(\mathbf{x}) + \sum_{i=1}^{M} \xi_i(\theta) \sqrt{\lambda_i} \phi_i(\mathbf{x}),$$

$$\langle \xi_i(\theta) \rangle = 0, \quad \langle \xi_i(\theta) \xi_j(\theta) \rangle = \delta_{ij}.$$

• Fredholm Integral Equation

$$\int C_{\kappa\kappa}(\mathbf{x}_1, \mathbf{x}_2) \phi_i(\mathbf{x}_1) d\mathbf{x}_1 = \lambda_i \phi_i(\mathbf{x}_2)$$

Uncertainty Representation by Stochastic Processes

Polynomial Chaos Expansion (PCE)

$$u(\mathbf{x}, \theta) = \sum_{i=0}^{N} u_i(\mathbf{x}) \Psi_i(\boldsymbol{\xi}),$$

$$\langle \Psi_i(\boldsymbol{\xi}) \rangle = 0, \quad \langle \Psi_i(\boldsymbol{\xi}) \Psi_j(\boldsymbol{\xi}) \rangle = \delta_{ij} \langle \Psi_i^2(\boldsymbol{\xi}) \rangle, \quad N+1 = \frac{(M+p)!}{M!p!}.$$

• Two-dimensional (M = 2) third order (p = 3) PCE

$$u(\mathbf{x}, \theta) = u_0(\mathbf{x}) + u_1(\mathbf{x})\xi_1 + u_2(\mathbf{x})\xi_2 + u_3(\mathbf{x})(\xi_1^2 - 1) + u_4(\mathbf{x})(\xi_1\xi_2) + u_5(\mathbf{x})(\xi_2^2 - 1) + u_6(\mathbf{x})(\xi_1^3 - 3\xi_1) + u_7(\mathbf{x})(\xi_1^2\xi_2 - \xi_2) + u_8(\mathbf{x})(\xi_1\xi_2^2 - \xi_1) + u_9(\mathbf{x})(\xi_2^3 - 3\xi_2).$$
7/43

The Spectral Stochastic FEM

The FEM discretization of an SPDE

$$\mathbf{A}(\kappa(\theta))\mathbf{u}(\theta) = \mathbf{f}.$$

• Expanding system parameters and solution process by KLE and PCE M

$$\kappa(\theta) = \sum_{i=0}^{M} \xi_i \kappa_i, \text{ and } \mathbf{u}(\theta) = \sum_{j=0}^{N} \Psi_j \mathbf{u}_j$$

Galerkin projection

$$\mathcal{AU}=\mathcal{F},$$

where

$$\mathcal{A} = \sum_{i=0}^{M} \mathbf{C}_{i} \otimes \mathbf{A}_{i}, \quad \mathbf{C}_{ijk} = \langle \xi_{i} \Psi_{j} \Psi_{k} \rangle \quad \text{and} \quad \mathcal{F}_{k} = \langle \Psi_{k} \mathbf{f} \rangle.$$

The Spectral Stochastic FEM

$$\mathcal{AU}=\mathcal{F}$$

- Large-scale linear system
- Very ill-conditioned
- Simple iterative methods are inefficient!
- Sparse and block structured
- Symmetric positive-definite (for elliptic SPDEs)

Preconditioned Conjugate Gradient Method (PCGM)

$$\mathcal{A} \; \mathcal{U} = \mathcal{F},$$
 $\mathcal{M}^{-1} \mathcal{A} \; \mathcal{U} = \mathcal{M}^{-1} \mathcal{F},$

- (\mathcal{M}^{-1}) is a good approximation to (\mathcal{A}^{-1})
- Condition number of $(\mathcal{M}^{-1}\mathcal{A})$ is much smaller than (\mathcal{A})
- Eigenvalues of $(\mathcal{M}^{-1}\mathcal{A})$ are clustered near one

Schwarz preconditioner for stochastic PDEs

• Partition the spatial domain

• Define a restiriction matrix

$$\mathbf{R}_s^T:\Omega_s\mapsto\Omega$$

• For each of KLE coefficient, define the subdomain stiffness matrix

$$\mathbf{A}_i^s = \mathbf{R}_s \mathbf{A}_i \mathbf{R}_s^T$$

Corresponds to

$$\nabla \cdot (\kappa_i(\mathbf{x}) \nabla u(\mathbf{x})) = f(\mathbf{x}), \quad \text{in} \quad D_s,$$
$$u(\mathbf{x}) = g(\mathbf{x}), \quad \text{on} \quad \partial D_s.$$

11/43

Schwarz preconditioner for stochastic PDEs

• The subdomain stochastic stiffness matrix

$$\mathcal{A}_s = \sum_{i=0}^M \mathbf{C}^i \otimes \mathbf{A}_i^s,$$

 Inspired by the Schwarz theory, we define the one-level stochastic Schwarz preconditioner

$$\mathcal{M}^{-1} = \sum_{s=1}^{S} \mathcal{R}_s^T \mathcal{A}_s^{-1} \mathcal{R}_s.$$

Schwarz preconditioner for stochastic PDEs

• The mean-based stochastic Schwarz preconditioner

$$\mathcal{M}_0^{-1} = [\mathbf{C}^0]^{-1} \otimes \sum_{s=1}^S \mathbf{R}_s^T [\mathbf{A}_s^0]^{-1} \mathbf{R}_s,$$

 Generalization of the block-diagonal mean-based preconditioner (Powell IMAJNA 2009, Pellissetti AES 2000, Ghanem CMAME 1996, others..)

$$\mathcal{M}_0^{-1} = \mathbf{I} \otimes [\mathbf{A}^0]^{-1}.$$

Coarse Grid Correction

• Define a set of bilinear hat basis functions

• A coarse grid restiriction operator is defined as

$$\mathbf{R}_0^T = \begin{bmatrix} \psi_1(\mathbf{x}_1) & \psi_2(\mathbf{x}_1) & \cdots & \psi_{n_0}(\mathbf{x}_1) \\ \psi_1(\mathbf{x}_2) & \psi_2(\mathbf{x}_2) & \cdots & \psi_{n_0}(\mathbf{x}_2) \\ \vdots & \vdots & \cdots & \vdots \\ \psi_1(\mathbf{x}_{n_i}) & \psi_2(\mathbf{x}_{n_i}) & \cdots & \psi_{n_0}(\mathbf{x}_{n_i}) \end{bmatrix}$$

Stochastic additive Schwarz preconditioner

Two-level Schwarz preconditioner for SPDEs

$$\mathcal{M}^{-1} = \mathcal{R}_0^T \mathcal{A}_0^{-1} \mathcal{R}_0 + \sum_{s=1}^S \mathcal{R}_s^T \mathcal{A}_s^{-1} \mathcal{R}_s,$$

 <u>Theorem</u>: The condition number of the stochastic additive Schwarz preconditioner is bounded by

$$cond\left(\mathcal{M}^{-1}\mathcal{A}\right) \leq C\frac{\kappa_{max}}{\kappa_{min}}\left(1+\frac{H}{h}\right)$$

where C is a constant independent of H, h and δ , M, and p.

• Poisson's equation with random coefficient

$$abla \cdot (\kappa(\mathbf{x}, \theta) \nabla u(\mathbf{x}, \theta)) = f(\mathbf{x}), \quad \mathbf{x} \in \Omega,$$

 $u(\mathbf{x}, \theta) = 0, \quad \mathbf{x} \in \partial \Omega.$

The permeability coefficient is a Gaussian or Uniform stochastic process with an exponential covariance

$$C_{\kappa\kappa}(\mathbf{x}, \mathbf{y}) = \sigma^2 \exp\left(\frac{-|x_1 - y_1|}{b_1} + \frac{-|x_2 - y_2|}{b_2}\right)$$

Realizations of the permeability coefficient $\kappa(\mathbf{x}, \theta)$

0.8 1	1.2	1.5	1.8
0.505		1.	805

0.8	0.9	1		1.1		
0.785				1.	16	3

0.8	1	1.2	1.4	1.6
0.746)			1.784

0.8	1.2
0.628	1.385

Stochastic Features

Mean and Variance of the solution process

	1e-05	2e-05
0	9	2e-05
	(b) σ_u^2	

Stochastic Features

Selected PCE coefficients of the solution process

-6e-05 -4e-05 -2e-05	0 2e-05
-6e-05	3e-05
(b) U	l 8

2e-06 5e-06 7e-06 1e-05 0 1e-05 (b) **u**₁₄

		Gauss	sian	Unifo	rm
M	p	cond	iter	cond	iter
2	1	9.7092	21	9.7027	21
	2	9.7195	21	9.7060	21
	3	9.7272	21	9.7077	21
	4	9.7335	21	9.7087	21
	2	M p 2 1 2 3 4	Gauss M p cond 2 1 9.7092 2 9.7195 3 9.7272 4 9.7335	Gaussian M p cond iter 2 1 9.7092 21 2 9.7195 21 3 9.7272 21 4 9.7335 21	Gaussian Unifo M p cond iter cond 2 1 9.7092 21 9.7027 2 9.7195 21 9.7060 3 9.7272 21 9.7077 4 9.7335 21 9.7087

		Gauss	sian	Unifo	rm
M	p	cond	iter	cond	iter
2	1	9.7092	21	9.7027	21
	2	9.7195	21	9.7060	21
	3	9.7272	21	9.7077	21
	4	9.7335	21	9.7087	21
3	1	9.7097	21	9.7029	21
	2	9.7203	21	9.7068	21
	3	9.7283	21	9.7090	21
	4	9.7347	21	9.7104	21

		Gaussian		Unifo	rm
M	p	cond	iter	cond	iter
2	1	9.7092	21	9.7027	21
	2	9.7195	21	9.7060	21
	3	9.7272	21	9.7077	21
	4	9.7335	21	9.7087	21
3	1	9.7097	21	9.7029	21
	2	9.7203	21	9.7068	21
	3	9.7283	21	9.7090	21
	4	9.7347	21	9.7104	21
4	1	9.7408	21	9.7207	21
	2	9.7751	21	9.7326	21
	3	9.8031	21	9.7391	21
	4	9.8273	21	9.7431	21

		Gauss	sian	Uniform		
$rac{\sigma}{\mu}$	p	cond	iter	cond	iter	
0.1	1	9.7408	21	9.7207	21	
	2	9.7751	21	9.7326	21	
	3	9.8031	21	9.7391	21	
	4	9.8273	21	9.7431	21	

		Gaussian		Unifo	rm
$rac{\sigma}{\mu}$	p	cond	iter	cond	iter
0.1	1	9.7408	21	9.7207	21
	2	9.7751	21	9.7326	21
	3	9.8031	21	9.7391	21
	4	9.8273	21	9.7431	21
0.2	1	9.7885	21	9.7482	21
	2	9.8568	22	9.7704	21
	3	9.9134	22	9.7820	21
	4	9.9638	22	9.7891	21

		Gaussian		Unifo	rm
$\frac{\sigma}{\mu}$	p	cond	iter	cond	iter
0.1	1	9.7408	21	9.7207	21
	2	9.7751	21	9.7326	21
	3	9.8031	21	9.7391	21
	4	9.8273	21	9.7431	21
0.2	1	9.7885	21	9.7482	21
	2	9.8568	22	9.7704	21
	3	9.9134	22	9.7820	21
	4	9.9638	22	9.7891	21
0.3	1	9.8367	22	9.7757	21
	2	9.9414	22	9.8071	21
	3	10.0338	22	9.8227	21
	4	10.1258	22	9.8321	21

• Scalability with respect to the overlap

		Gauss	sian	Unifo	rm		
δ	p	cond	iter	cond	iter		
2h	1	7.3252	16	7.3141	16		
	2	7.3441	16	7.3203	16		
	3	7.3593	16	7.3236	16		
	4	7.3724	16	7.3248	16		

• Scalability with respect to the overlap

		Gauss	sian	Unifo	rm
δ	p	cond	iter	cond	iter
2h	1	7.3252	16	7.3141	16
	2	7.3441	16	7.3203	16
	3	7.3593	16	7.3236	16
	4	7.3724	16	7.3248	16
3h	1	5.2401	13	5.2371	13
	2	5.2448	14	5.2391	13
	3	5.2485	14	5.2401	13
	4	5.2517	14	5.2522	13

• Scalability with respect to the overlap

		Gauss	sian	Unifo	rm
δ	p	cond	iter	cond	iter
2h	1	7.3252	16	7.3141	16
	2	7.3441	16	7.3203	16
	3	7.3593	16	7.3236	16
	4	7.3724	16	7.3248	16
3h	1	5.2401	13	5.2371	13
	2	5.2448	14	5.2391	13
	3	5.2485	14	5.2401	13
	4	5.2517	14	5.2522	13
4h	1	4.6796	12	4.6767	12
	2	4.6843	13	4.6785	13
	3	4.6881	13	4.6794	13
	4	4.6913	13	4.6801	13

- Scalability with respect to $\frac{H}{h}$: fixed overlap
 - $\bullet \ p=2$

- Scalability with respect to $\frac{H}{h}$: proportional overlap $\delta = 0.1H$
 - p=2

Two-Dimensional Elasticity Problem

$$\begin{aligned} \nabla \cdot \boldsymbol{\sigma} \left(\mathbf{u}(\mathbf{x}, \theta) \right) &= \mathbf{f}(\mathbf{x}), & \text{in} \quad \Omega \times \Theta, \\ \boldsymbol{\sigma} \left(\mathbf{u}(\mathbf{x}, \theta) \right) \cdot \mathbf{n} &= \mathbf{g}(\mathbf{x}), & \text{on} \quad \partial \Omega_N \times \Theta, \\ \mathbf{u}(\mathbf{x}, \theta) &= 0, & \text{on} \quad \partial \Omega_D \times \Theta. \end{aligned}$$

Hooke's law

$$\boldsymbol{\sigma}\left(\mathbf{u}(\mathbf{x},\theta)\right) = 2\mu\,\boldsymbol{\epsilon}\left(\mathbf{u}(\mathbf{x},\theta)\right) + \lambda\,\mathrm{tr}\left(\boldsymbol{\epsilon}\left(\mathbf{u}(\mathbf{x},\theta)\right)\right)\mathbf{I}.$$

Lamé constants

$$\lambda = \frac{E(\mathbf{x}, \theta)}{2(1+\nu)}, \qquad \mu = \frac{E(\mathbf{x}, \theta)\nu}{(1+\nu)(1-2\nu)}$$

• Young's modulus $E(\mathbf{x}, \theta)$ is modeled as a random field and Poisson's ratio ν is assumed to be deterministic quantity

Stochastic Features

Mean and standard deviation of the displacement field

4e-07

5e-07

Stochastic Features

Deformed meshes corresponding to chaos coefficients

(b) \mathbf{u}_3

		Gaussian		Unifor	m
M	p	cond	iter	cond	iter
2	1	13.6048	23	13.5442	22
	2	13.7231	24	13.5699	22
	3	13.8751	25	13.5883	22
	4	14.0697	25	13.6019	22

		Gaussian		Unifor	m
M	p	cond	iter	cond	iter
2	1	13.6048	23	13.5442	22
	2	13.7231	24	13.5699	22
	3	13.8751	25	13.5883	22
	4	14.0697	25	13.6019	22

		Gaussi	ian	Unifor	m
M	p	cond	iter	cond	iter
2	1	13.6048	23	13.5442	22
	2	13.7231	24	13.5699	22
	3	13.8751	25	13.5883	22
	4	14.0697	25	13.6019	22
3	1	13.6563	22	13.5760	22
	2	13.8143	24	13.6282	22
	3	14.0014	25	13.6614	23
	4	14.2790	25	13.6851	23

		Gauss	ian	Unifor	m
M	p	cond	iter	cond	iter
2	1	13.6048	23	13.5442	22
	2	13.7231	24	13.5699	22
	3	13.8751	25	13.5883	22
	4	14.0697	25	13.6019	22
3	1	13.6563	22	13.5760	22
	2	13.8143	24	13.6282	22
	3	14.0014	25	13.6614	23
	4	14.2790	25	13.6851	23
4	1	13.6953	24	13.5981	22
	2	13.8824	25	13.6681	23
	3	14.0936	25	13.7173	23
	4	14.3575	25	13.7525	23

		Gauss	ian	Unifor	m
$\frac{\sigma}{\mu}$	p	cond	iter	cond	iter
0.1	1	13.5623	22	13.5307	22
	2	13.6160	22	13.5546	22
	3	13.6626	24	13.5702	22
	4	13.7056	24	13.5806	22

		Gaussian		Unifor	m
$\frac{\sigma}{\mu}$	p	cond	iter	cond	iter
0.1	1	13.5623	22	13.5307	22
	2	13.6160	22	13.5546	22
	3	13.6626	24	13.5702	22
	4	13.7056	24	13.5806	22
0.2	1	13.6472	23	13.5745	22
	2	13.7786	24	13.6274	22
	3	13.9120	24	13.6636	22
	4	14.0581	24	13.6888	22

		Gauss	ian	Unifor	m
$\frac{\sigma}{\mu}$	p	cond	iter	cond	iter
0.1	1	13.5623	22	13.5307	22
	2	13.6160	22	13.5546	22
	3	13.6626	24	13.5702	22
	4	13.7056	24	13.5806	22
0.2	1	13.6472	23	13.5745	22
	2	13.7786	24	13.6274	22
	3	13.9120	24	13.6636	22
	4	14.0581	24	13.6888	22
0.3	1	13.7478	24	13.6230	23
	2	14.0075	25	13.7122	23
	3	14.3430	25	13.7767	23
	4	15.0671	28	13.8243	23

• Scalability with respect to $\frac{H}{h}$

 $\bullet \ p=2$

- Two-level Schwarz domain decomposition preconditioner is introduced for the linear system of the spectral stochastic finite element method.
 - The stochastic Schwarz preconditioner achieves a convergence rate that is independent of the coefficient of variation, dimension and order of the stochastic expansion.
 - The condition number of the stochastic Schwarz preconditioner grows as $\mathcal{O}\left(\frac{H}{h}\right)$.

Acknowledgment

Financial Support

- The Centre for Numerical Algorithms and Intelligent Software (NAIS Project)
- Scottish Funding Council
- Engineering and Physical Research Council