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Introduction

Importance of scalable algorithms

Massive parallelism

Off the shelf clusters with more than 1000 cores are available.
Scalability is no longer optional.

Scalability

Strong scalability: For a given problem size, the computation time
goes down as the number of computation units
Increase.

Weak scalability: More computation units allows to solve bigger
problems in the same amount of time.
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Non Scalability of one-level DDM
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First rationale: Coarse spaces algorithms behaviors

Rationales for Piecewise Krylov methods
Second Rationale: generalization of Krylov methods

The standard way of getting scalability: coarse spaces

Choose a coarse space X
© Either set u? to 0 or to the coarse solution.
@ Until convergence

© Compute the uncorrected iterates u;
Schwarz.

1/2 using Optimized

Cu™2 = f in Q;

/

Byul ™2 = Byu!  on 8Q; N AQ

g
ufﬂ/z — g on 09Q; NN

@ Compute in some way a coarse correction U"™! in X defined
over €2, then compute the corrected iterates
ntl._  ntl/2 L yrtl

/ : I
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Rationales for Piecewise Krylov methods First rationale: Coarse spaces algorithms behaviors

Second Rationale: generalization of Krylov methods

Only applying the coarse correction every few iterates
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Rationales for Piecewise Krylov methods First rationale: Coarse spaces algorithms behaviors

Second Rationale: generalization of Krylov methods

Stopping coarse correction after 20 iterates
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Rationales for Piecewise Krylov methods First rationale: Coarse spaces algorithms behaviors
Second Rationale: generalization of Krylov methods

Changing the coarse space every iterate

© No need to apply coarse correction every iterate.

@ Using the same coarse space every iterate: always correcting
the same errors.

Coarse functions should

@ Satisfy the interior equation inside each subdomain.
@ Should be discontinuous.
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Rationales for Piecewise Krylov methods First rationale: Coarse spaces algorithms behaviors
Second Rationale: generalization of Krylov methods

Cheap coarse spaces

If
L(u")=f forall n.

Then
L(u"™ —u") =0 forall n.

© Use the successive u"t! — " as coarse functions.

@ Or use

u™t—y in Q;,

0 in Q; when j # |,

as coarse functions.
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Rationales for Piecewise Krylov methods First rationale: Coarse spaces algorithms behaviors
Second Rationale: generalization of Krylov methods

Acceleration of Domain decomposition methods

lterative methods are not used standalone in practice.

Use of DDM as preconditioners

@ Discrete/continuous linear differential operator Ay,

@ A, is sparse. lts inverse is not.

@ “Inverting” in parallel on each subdomain a restriction of A;

to ;.

@ Define the preconditioner as a combination of the inverse
matrices computed in parallel and get the preconditioner P.

v

lterative method : Richardson on the preconditioned operator PAy,.
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Rationales for Piecewise Krylov methods First rationale: Coarse spaces algorithms behaviors
Second Rationale: generalization of Krylov methods

Krylov methods as extrapolation methods

Extrapolation methods

Find "best” A}

Key properties

© In exact arithmetic, Krylov methods equivalent to
extrapolation methods.

@ In floating point arithmetic, Krylov methods are much more
stable than extrapolation methods.

© uy satisfy the interior equation inside every subdomain
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Rationales for Piecewise Krylov methods First rationale: Coarse spaces algorithms behaviors
Second Rationale: generalization of Krylov methods

Piecewise extrapolation

If \] depended on the subdomain then .

Extrapolation methods

Find “best” ?’k

n n

n n k n
Ui = Z)\i7kui . Z)\i7k = 1.

=0 k=0

Per-subdomain A parameters in extrapolation replaces coarse
spaces for scalability. In practice too many parameters.
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Extrapolation Algorithms
Numerical Results

Piecewise Extrapolation and Krylov methods Possible improvements to Piecewise methods

Piecewise extrapolation with Robin jump minimizer

© Set an initial guess.
© Until convergence:

O Set ym /2

i

as the unique solution to

77u51+1/2 — Auf“/2 = f in €2;,

1

(9U;H_1/2 n+1/2 aujn n
8—.1,_ + pul_ = ani -+ pUJ on aQ, M aQJ,

u™% =0 on Q; N OQ.

@ Set u'f = uf+1/2 + > o A?J,Zl(qup — u¥) such that

/

aup+1 8u{7+1
I n+1 . J {7—|—1
( on; T ) ( on; Ay

Is minimized where g is another Robion parameter.
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Extrapolation Algorithms

. . . Numerical Results
Piecewise Extrapolation and Krylov methods Possible improvements to Piecewise methods

Richardson with Piecewise line search algorithm

Use only a single direction per subdomain: ufﬂ/z — ul.
@ Set an initial guess.
© Until convergence:

O Set ufﬂ/z using Optimized Schwarz.
@ Compute N scalars )\7+1 and set

utt = (1 - )\7+1)ul'-7+1/2 + A"yl such that
oumtl . Ou™tt . ’
zU:/ru ( on; P ) on, P

IS minimized.

K. Santugini Piecewise Krylov methods



Extrapolation Algorithms
Numerical Results

Piecewise Extrapolation and Krylov methods Possible improvements to Piecewise methods

Full Robin Minimizing Piecewise Extrapolation algorithm

Use only two directions per subdomain: u;7+1/2

—1/2 —
F

— u[’ and

@ Set an initial guess.
@ Until convergence:

@ Set u;’+1/2 using optimized Schwarz

1/2 1/2 N
@ Set u™l:=y" ot S AT (T /2 _ u) so as to minimize

au;H_l n+1 0”.1{7_'_1 n+1
zu:/rj < on; P )_ on; P

2
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Extrapolation Algorithms
Numerical Results
Possible improvements to Piecewise methods

Piecewise Extrapolation and Krylov methods

Influence of numbers of subdomains: 2 subdomains in 1D
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Piecewise Extrapolation and Krylov methods

Influence of numbers of subdomains: 5 subdomains in 1D
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Numerical Results
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Piecewise Extrapolation and Krylov methods

Influence of numbers of subdomains: 10 subdomains in 1D
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Extrapolation Algorithms
Numerical Results

Piecewise Extrapolation and Krylov methods Possible improvements to Piecewise methods

Influence of numbers of subdomains: 40 subdomains in 1D

— N Ormal

- | ine Search
- Piecewise LS
— 2 Steps PW

20 40 60 80 100 120

K. Santugini Piecewise Krylov methods




Extrapolation Algorithms
Numerical Results

Piecewise Extrapolation and Krylov methods Possible improvements to Piecewise methods

Influence of numbers of subdomains: in 2D
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Conclusion

Conclusion

@ Rationales for exploring Piecewise Krylov.
@ First numerical simulations in 1d and 2d.

© Piecewise extrapolation works better than extrapolation on
tested algorithms.

©Q Piecewise extrapolation don't remove the need for a coarse
space.
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Conclusion

Future works

© Implementing Krylov instead of extrapolation (better
numerical stability).

@ Elegant Piecewise GMRES using only piecewise Arnoldi
coefficients?

© Comparing fixed coarse spaces methods and piecewise Krylov.

©Q Use both Discontinuous coarse spaces and piecewise Krylov.
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