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Importance of scalable algorithms

Massive parallelism

Off the shelf clusters with more than 1000 cores are available.
Scalability is no longer optional.

Scalability

Strong scalability: For a given problem size, the computation time
goes down as the number of computation units
increase.

Weak scalability: More computation units allows to solve bigger
problems in the same amount of time.
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Non Scalability of one-level DDM
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First rationale: Coarse spaces algorithms behaviors
Second Rationale: generalization of Krylov methods

The standard way of getting scalability: coarse spaces

Choose a coarse space X
1 Either set u0

i to 0 or to the coarse solution.
2 Until convergence

1 Compute the uncorrected iterates u
n+1/2
i using Optimized

Schwarz.

Lun+1/2
i = f in Ωi

Bijun+1/2
i = Bijunj on ∂Ωi ∩ ∂Ωj

u
n+1/2
i = g on ∂Ωi ∩ ∂Ω

2 Compute in some way a coarse correction Un+1 in X defined
over Ω, then compute the corrected iterates

un+1
i := u

n+1/2
i + Un+1

|Ωi
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First rationale: Coarse spaces algorithms behaviors
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Only applying the coarse correction every few iterates

Figure : DCS-DMNV Algorithm presented during the DD21
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First rationale: Coarse spaces algorithms behaviors
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Stopping coarse correction after 20 iterates

Figure : DCS-DMNV Algorithm presented during the DD21
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Changing the coarse space every iterate

Observations

1 No need to apply coarse correction every iterate.

2 Using the same coarse space every iterate: always correcting
the same errors.

Coarse functions should

1 Satisfy the interior equation inside each subdomain.

2 Should be discontinuous.
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Cheap coarse spaces

If
L(un) = f for all n.

Then
L(un+1 − un) = 0 for all n.

1 Use the successive un+1 − un as coarse functions.

2 Or use {
un+1
i − uni in Ωi ,

0 in Ωj when j 6= i ,

as coarse functions.
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Acceleration of Domain decomposition methods

Iterative methods are not used standalone in practice.

Use of DDM as preconditioners

Discrete/continuous linear differential operator Ah.

Ah is sparse. Its inverse is not.

“Inverting” in parallel on each subdomain a restriction of Ai

to Ωi .

Define the preconditioner as a combination of the inverse
matrices computed in parallel and get the preconditioner P.

Iterative method : Richardson on the preconditioned operator PAh.
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Krylov methods as extrapolation methods

Extrapolation methods

Find “best” λnk

unK =
n∑

k=0

λnku
k ,

n∑
k=0

λnk = 1.

Key properties

1 In exact arithmetic, Krylov methods equivalent to
extrapolation methods.

2 In floating point arithmetic, Krylov methods are much more
stable than extrapolation methods.

3 unK satisfy the interior equation inside every subdomain
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Piecewise extrapolation

If λnk depended on the subdomain then .

Extrapolation methods

Find “best” λni ,k

unK =
n∑

i=0

λni ,ku
k
i ,

n∑
k=0

λni ,k = 1.

Per-subdomain λ parameters in extrapolation replaces coarse
spaces for scalability. In practice too many parameters.
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Piecewise extrapolation with Robin jump minimizer

1 Set an initial guess.
2 Until convergence:

1 Set u
n+1/2
i as the unique solution to

ηu
n+1/2
i −4u

n+1/2
i = f in Ωi ,

∂u
n+1/2
i

∂ni
+ pu

n+1/2
i =

∂unj
∂ni

+ punj on ∂Ωi ∩ ∂Ωj ,

u
n+1/2
i = 0 on ∂Ωi ∩ ∂Ω.

2 Set un+1
i := u

n+1/2
i +

∑n
k=0 λ

n+1
i,k (u

k+1/2
i − uki ) such that

∑
ij

∫
Γij

∣∣∣∣∣
(
∂un+1

i

∂ni
+ qun+1

i

)
−

(
∂un+1

j

∂ni
+ qun+1

j

)∣∣∣∣∣
2

is minimized where q is another Robion parameter.
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Richardson with Piecewise line search algorithm

Use only a single direction per subdomain: u
n+1/2
i − uni .

1 Set an initial guess.
2 Until convergence:

1 Set u
n+1/2
i using Optimized Schwarz.

2 Compute N scalars λn+1
i and set

un+1
i := (1− λn+1

i )u
n+1/2
i + λn+1

i uni such that

∑
ij

∫
Γij

∣∣∣∣∣
(
∂un+1

i

∂ni
+ pun+1

i

)
−

(
∂un+1

j

∂ni
+ pun+1

j

)∣∣∣∣∣
2

is minimized.
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Full Robin Minimizing Piecewise Extrapolation algorithm

Use only two directions per subdomain: u
n+1/2
i − uni and

u
n−1/2
i − un−1

i .

1 Set an initial guess.
2 Until convergence:

1 Set u
n+1/2
i using optimized Schwarz

2 Set un+1
i := u

n+1/2
i +

∑
i λ

n+1
i (u

n+1/2
i − uni ) so as to minimize

∑
ij

∫
Γij

∣∣∣∣∣
(
∂un+1

i

∂ni
+ pun+1

i

)
−

(
∂un+1

j

∂ni
+ pun+1

j

)∣∣∣∣∣
2

.
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Influence of numbers of subdomains: 2 subdomains in 1D
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Influence of numbers of subdomains: 5 subdomains in 1D
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Influence of numbers of subdomains: 10 subdomains in 1D
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Influence of numbers of subdomains: 40 subdomains in 1D
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Influence of numbers of subdomains: in 2D
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Conclusion

1 Rationales for exploring Piecewise Krylov.

2 First numerical simulations in 1d and 2d .

3 Piecewise extrapolation works better than extrapolation on
tested algorithms.

4 Piecewise extrapolation don’t remove the need for a coarse
space.
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Future works

1 Implementing Krylov instead of extrapolation (better
numerical stability).

2 Elegant Piecewise GMRES using only piecewise Arnoldi
coefficients?

3 Comparing fixed coarse spaces methods and piecewise Krylov.

4 Use both Discontinuous coarse spaces and piecewise Krylov.
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