
Sweeping Preconditioners and Source Transfer in the
context of Domain Decomposition

Hui Zhang
joint work with M. J. Gander

Section de Mathematiques
Universite de Geneve

Sept. 19, 2013, Lugano

M. J. Gander, H. Zhang (Unige) Sweeping Precond., Source Transfer & DDM Sept. 19, 2013, Lugano 1 / 25



History & Motivation History

Optimal Schwarz Methods I

In their 1994 report

Optimal Interface Conditions for Domain Decomposition Methods,

Nataf–Rogier–Sturler formulated the Jacobi-type optimal Schwarz method

for one-way (i.e. strip-wise or slice-wise) domain decomposition,

that converges in J steps for J subdomains

of which on interfaces the DtN transmission conditions are used.

Following this line, many works have focused on approximation of DtN,
e.g. A. Toselli tried PML (though transmission conditions are put on most
exterior boundary of PML so not a proper way from our point of view) in
DD9, 1998; A. Schadle, L. Zschiedrich also tried PML in DD16, 2007
(which is the proper way from our viewpoint).
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History & Motivation History

Optimal Schwarz Methods II

In their DD19, 2009 paper

Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains,

Gander–Kwok formulated another Jacobi-type optimal Schwarz method

that converges in 2 steps for J arbitrarily decomposed subdomains

of which on interfaces all-to-all communications are used.

There has not been so far an approximation of the all-to-all operator.

M. J. Gander, H. Zhang (Unige) Sweeping Precond., Source Transfer & DDM Sept. 19, 2013, Lugano 3 / 25



History & Motivation History

AILU

In their 2001 paper,

AILU for Helmholtz Problems: a New Preconditioner Based on the Analytic

Parabolic Factorization,

Gander–Nataf identified the parabolic factorization

∂xx + (∂yy + ω2) = (∂x + DtN) ◦ (∂x −DtN), DtN = i
√
∂yy + ω2

as the block LU factorization of the block tri-diagonal linear system.
A second-order local (i.e. differential) approximation of DtN was used.
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History & Motivation History

A matrix equation for DtN (from the 2001 AILU paper)

The algebraic DtN (i.e. Schur complement) was found to satisfy a matrix
equation. Consider elimination of a semi-infinite matrix from the beginning
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TN = D − LT−1

N−1L, T1 = D.

Let N →∞, we obtain T∞ = D − LT−1
∞ L. This is less exploited than

analytic techniques.
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History & Motivation History

Sweeping Preconditioners of Engquist–Ying

In 2010, Engquist–Ying proposed their sweeping preconditioners.

The connection between block LU and DtN was rediscovered.

The improvement on AILU is achieved by using PML approximation
of DtN rather than second-order differential.

Artificial damping (introduced by S. Kim in 1996) was used for
heterogeneous media.

Many works have been inspired. For examples,

Poulson–Engquist–Fomel–Li–Ying’s parallel implementation,

Chen–Xiang’s source transfer method with theory,

Stolk’s rapidly converging DDM,

Childs–Graham–Shank’s hybrid sweeping addressing parallelism.

Geuzaine–Vion accelerate Jacobi-type OSM by GS-type
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History & Motivation Motivation

How can we understand all the variants in a unified way?

We will show that

AILU,

sweeping preconditioners,

source transfer,

and Stolk’s DDM

are optimized Schwarz methods of symmetric Gauss-Seidel type with
different choices of

transmission conditions on subdomain interfaces,

and overlap size.
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Sweeping Precond., Stolk’s DDM and Source Transfer Sweeping Preconditioners = OSM with PML–Dirichlet

One-way Decomposition

Let us consider a PDE problem

L u = f in Ω,
B u = g on ∂Ω.

We decompose Ω into strips (or slices in 3-D).
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Sweeping Precond., Stolk’s DDM and Source Transfer Sweeping Preconditioners = OSM with PML–Dirichlet

Block Tri-Diagonal System

Correspondingly, we introduce the partition of grids.

The linear system from discretization of the PDE then can be written in
the block tri-diagonal form

A11 A12

A21 A22 A23

. . .
. . .

. . .
. . .

. . . AJ−1,J

AJ,J−1 AJJ
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Sweeping Precond., Stolk’s DDM and Source Transfer Sweeping Preconditioners = OSM with PML–Dirichlet

Block LU Factorization

A11 A12

A21 A22 A23

A32 A33

 =

T1

A21 T2

A32 T3

I T−1
1 A12

I T−1
2 A23

I
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Sweeping Precond., Stolk’s DDM and Source Transfer Sweeping Preconditioners = OSM with PML–Dirichlet

‘L’ Solve: the Forward Sweeping

T1

A21 T2

A32 T3

v1

v2

v3

 =

f1

f2

f3


Algorithm 1.1 Forward sweeping

Solve successively the following sub-problems:
T1v1 = f1,
T2v2 = f2 − A21v1,
T3v3 = f3 − A32v2.
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Sweeping Precond., Stolk’s DDM and Source Transfer Sweeping Preconditioners = OSM with PML–Dirichlet

‘U’ Solve: the Backward Sweeping

I T−1
1 A12

I T−1
2 A23

I

u1

u2

u3

 =

v1

v2

v3


Algorithm 1.2 Backward sweeping

Let u3 ← v3.
Solve successively

T2u2 = T2v2 − A23u3,
T1u1 = T1v1 − A12u2.
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Sweeping Precond., Stolk’s DDM and Source Transfer Sweeping Preconditioners = OSM with PML–Dirichlet

Block LU is an Optimal Schwarz Method

Theorem 1 (Gander, Z. ’13)

The forward and backward sweeping based on the block LU factorization is
a non-overlapping optimal Schwarz method of symmetric Gauss-Seidel type
with DtN transmission conditions on the left boundaries of subdomains
and Dirichlet transmission on the right and using zero initial guess.

Note that the optimal Schwarz method converges for one forward and one

backward sweeping for arbitrary initial guess.
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Sweeping Precond., Stolk’s DDM and Source Transfer Sweeping Preconditioners = OSM with PML–Dirichlet

AILU, Sweeping Preconditioners are Optimized Schwarz
Methods (OSM)

Corollary 2

AILU is a non-overlapping optimized Schwarz method of symmetric
Gauss-Seidel type with second-order differential approximation of DtN
transmission on the left boundaries of subdomains and Dirichlet on the
right.

Corollary 3

Sweeping preconditioners of Engquist–Ying are non-overlapping optimized
Schwarz methods of symmetric Gauss-Seidel type with PML or hierarchical
matrix approximation of DtN transmission on the left boundaries of
subdomains and Dirichlet on the right.
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Sweeping Precond., Stolk’s DDM and Source Transfer Sweeping Preconditioners = OSM with PML–Dirichlet

Schwarz Form of ‘L’ Solve at PDE Level

Algorithm 2.1 Schwarz form of the ‘L’ solve (taking u0 = 0)

Given initial guess u0, solve successively the following sub-problems:
(i) 

Lv1 = f , in Ω1,
Bv1 = g , on ∂Ω,

v1 = u0
2 , on Γ1,
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Sweeping Precond., Stolk’s DDM and Source Transfer Sweeping Preconditioners = OSM with PML–Dirichlet

Schwarz Form of ‘L’ Solve at PDE Level

Algorithm 2.1 Schwarz form of the ‘L’ solve (taking u0 = 0)

Given initial guess u0, solve successively the following sub-problems:
(ii) 

Lv2 = f , in Ω2,
Bv2 = g , on ∂Ω,

(∂n2 + S l1)(v2 − v1) = 0, on Γ1,
v2 = u0

3 , on Γ2,

where S l1 is the DtN operator on Γ1 calculated with L in Ω1.
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Sweeping Precond., Stolk’s DDM and Source Transfer Sweeping Preconditioners = OSM with PML–Dirichlet

Schwarz Form of ‘L’ Solve at PDE Level

Algorithm 2.1 Schwarz form of the ‘L’ solve (taking u0 = 0)

Given initial guess u0, solve successively the following sub-problems:
(iii) 

Lv3 = f , in Ω3,
Bv3 = g , on ∂Ω,

(∂n3 + S l2)(v3 − v2) = 0, on Γ2

where S l1 is the DtN operator on Γ2 calculated with L in Ω1 ∪ Ω2.
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Sweeping Precond., Stolk’s DDM and Source Transfer Sweeping Preconditioners = OSM with PML–Dirichlet

Schwarz Form of ‘U’ Solve at PDE Level

Algorithm 2.2 Schwarz form of the ‘U’ solve

Let u3 ← v3.
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Sweeping Precond., Stolk’s DDM and Source Transfer Sweeping Preconditioners = OSM with PML–Dirichlet

Schwarz Form of ‘U’ Solve at PDE Level

Algorithm 2.2 Schwarz form of the ‘U’ solve

Solve
(iv) 

Lu2 = f , in Ω2,
Bu2 = g , ∂Ω,

(∂n3 + S l2)(u2 − v1) = 0, on Γ1,
u2 = u3, on Γ2.
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Sweeping Precond., Stolk’s DDM and Source Transfer Sweeping Preconditioners = OSM with PML–Dirichlet

Schwarz Form of ‘U’ Solve at PDE Level

Algorithm 2.2 Schwarz form of the ‘U’ solve

Solve
(v) 

Lu1 = f , in Ω1,
Bu1 = g , ∂Ω,

u1 = u2, on Γ1.
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Sweeping Precond., Stolk’s DDM and Source Transfer General OSM of symmetric Gauss-Seidel type

Partition of Nodes: Non-Overlapping

We partition the domain into subdomains Ω̃i with each subdomain further
partitioned into boundary layers that are shared with other subdomains
and non-shared interior, i.e.

Ω̃i = Γi−1 ∪ Ωi ∪ Γi .
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Sweeping Precond., Stolk’s DDM and Source Transfer General OSM of symmetric Gauss-Seidel type

Partition of Nodes: Overlapping

We partition the domain into subdomains Ω̃i with each subdomain further
partitioned into boundary layers that are shared with other subdomains
and non-shared interior, i.e.

Ω̃i = Γi−1 ∪ Ωi ∪ Γi .
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Sweeping Precond., Stolk’s DDM and Source Transfer General OSM of symmetric Gauss-Seidel type

OSM of Symmetric Gauss-Seidel Type at Matrix Level

Algorithm 3.1 Optimal Schwarz method forward sweeping

Given arbitrary initial guess (ũ
(0)
j , j = 1, 2, 3), at i-th iteration, we solve

successively the following sub-problems:
(1)(

A11 A1Γ1

AΓ11 AΓ1Γ1

)(
v

(i)
1

v
(i)
Γ1

)
=

(
f1

fΓ1 + (AΓ1Γ1
− AΓ1Γ1)u

(i−1)
Γ1

− AΓ12u
(i−1)
2

)
,

where AΓ1Γ1
is arbitrary ensuring well-posedness.
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Sweeping Precond., Stolk’s DDM and Source Transfer General OSM of symmetric Gauss-Seidel type

OSM of Symmetric Gauss-Seidel Type at Matrix Level

Algorithm 3.1 Optimal Schwarz method forward sweeping

Given arbitrary initial guess (ũ
(0)
j , j = 1, 2, 3), at i-th iteration, we solve

successively the following sub-problems:
(2)TΓ1 AΓ12

A2Γ1 A22 A2Γ2

AΓ22 AΓ2Γ2


v̄

(i)
Γ1

v
(i)
2

v
(i)
Γ2

 =

 fΓ1 + (TΓ1 − AΓ1Γ1 )v
(i)
Γ1
− AΓ11v

(i)
1

f2

fΓ2 + (AΓ2Γ2
− AΓ2Γ2 )u

(i−1)
Γ2

− AΓ23u
(i−1)
3

 ,

where AΓ2Γ2
is arbitrary ensuring well-posedness.
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Sweeping Precond., Stolk’s DDM and Source Transfer General OSM of symmetric Gauss-Seidel type

OSM of Symmetric Gauss-Seidel Type at Matrix Level

Algorithm 3.1 Optimal Schwarz method forward sweeping

Given arbitrary initial guess (ũ
(0)
j , j = 1, 2, 3), at i-th iteration, we solve

successively the following sub-problems:
(3) (

TΓ2 AΓ23

A3Γ2 A33

)(
u

(i)
Γ2

u
(i)
3

)
=

(
fΓ2 + (TΓ2 − AΓ2Γ2)v

(i)
Γ2
− AΓ22v

(i)
2

f3

)
.
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Sweeping Precond., Stolk’s DDM and Source Transfer General OSM of symmetric Gauss-Seidel type

OSM of Symmetric Gauss-Seidel Type at Matrix Level

Algorithm 3.2 Optimal Schwarz method backward sweeping

Given arbitrary initial guess (ũ
(0)
j , j = 1, 2, 3), at i-th iteration, we solve

successively the following sub-problems:
(4)TΓ1 AΓ12

A2Γ1 A22 A2Γ2

AΓ22 A
Γ2Γ2


u

(i)
Γ1

u
(i)
2

ū
(i)
Γ2

 =

 fΓ1 + (TΓ1 − AΓ1Γ1 )v
(i)
Γ1
− AΓ11v

(i)
1

f2

fΓ2 + (AΓ2Γ2 − A
Γ2Γ2

)u
(i)
Γ2
− AΓ23u

(i)
3

 .

where A
Γ2Γ2

is arbitrary ensuring well-posedness.
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Sweeping Precond., Stolk’s DDM and Source Transfer General OSM of symmetric Gauss-Seidel type

OSM of Symmetric Gauss-Seidel Type at Matrix Level

Algorithm 3.2 Optimal Schwarz method backward sweeping

Given arbitrary initial guess (ũ
(0)
j , j = 1, 2, 3), at i-th iteration, we solve

successively the following sub-problems:
(5)(

A11 A1Γ1

AΓ11 A
Γ1Γ1

)(
u

(i)
1

ū
(i)
Γ1

)
=

(
f1

fΓ1 + (A
Γ1Γ1
− AΓ1Γ1)u

(i)
Γ1
− AΓ12u

(i)
2

)
,

where A
Γ1Γ1

is arbitrary ensuring well-posedness.
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Sweeping Precond., Stolk’s DDM and Source Transfer General OSM of symmetric Gauss-Seidel type

Convergence of the Optimal Schwarz Method

Theorem 4 (Gander, Z. ’13)

If TΓi
, i = 1, . . . , J − 1 correspond to the algebraic DtN (i.e. Schur

complements), then the optimal Schwarz method converges in one
iteration consisting of one forward and one backward sweeping for
arbitrary initial guess.

Theorem 5 (Gander, Z.’13)

If DtN transmission conditions are used on the left boundaries of
subdomains, the optimal Schwarz method converges to the exact solution
in one forward and one backward sweeping for arbitrary initial guess.

Proof.

Consider the error equation and make use of the definition of DtN to find
vanishing boundary data on interfaces.

Note that the theorems apply to both overlapping and non-overlapping methods.
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Sweeping Precond., Stolk’s DDM and Source Transfer Stolk’s DDM = OSM with PML–PML + symmetric assumption

Stolk’s Rapidly Converging Domain Decomposition Method

Theorem 6 (Gander, Z. ’13)

Stolk’s rapidly converging DDM is a non-overlapping optimized Schwarz
method of symmetric Gauss-Seidel type with zero initial guess and PML
approximation of DtN transmission conditions on the left and right
boundaries of subdomains under the assumption that the DtN is
symmetric w.r.t. each interface.

Remark. As we have seen, the symmetry assumption is not necessary for
one step convergence. This is important because the symmetry
assumption does, for example, not hold for heterogeneous media.
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Sweeping Precond., Stolk’s DDM and Source Transfer Stolk’s DDM = OSM with PML–PML + symmetric assumption

Proof

For example, in the forward sweeping of the optimized Schwarz method

(∂n1 + Sr1)v
(1)
1 = 0, on Γ1

is followed by

(∂n2 + S l1)v
(1)
2 = (−∂n1 + S l1)v

(1)
1 on Γ1.

Here, S l1(Sr1) is the DtN or its approximation calculated in the left(right)
to Γ1. Based on the assumption that Sr1 = S l1 and substituting the first
equation to the second, we obtain

(∂n2 + S l1)v
(1)
2 = −2∂n1v

(1)
1 ,

which says v
(1)
2 has a non-zero Neumann jump −2∂n1v

(1)
1 across Γ1

between Ω2 and the PML region. In other words, it has a Dirac source
along Γ1. This gives Stolk’s DDM. �
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Sweeping Precond., Stolk’s DDM and Source Transfer Source Transfer = OSM + modified source terms

Source Transfer Domain Decomposition Method

Theorem 7 (Chen, Gander, Z. ’13)

The source transfer method is an overlapping optimized Schwarz method
of symmetric Gauss-Seidel type with each overlap covering half
subdomains that equips PML transmission conditions on the left and right
boundaries in the forward sweeping and Dirichlet instead of PML on the
right boundaries in the backward sweeping. Moreover, the source terms
are consistently modified in the forward sweeping.

Many thanks to very helpful discussions with Zhiming Chen!
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Numerical & Spectral Examples

Settings for Numerical Examples

We solve on the unit square the Helmholtz equation with one point source.
We use zero initial guess for GMRES with relative residual tolerance 10−6.

ω: wavenumber

J: number of subdomains

m: minimal number of pml grid layers on subdomain boundaries to
reach the given number of iterations

nx: number of grid layers including interior, overlap and pml, along x
(partitioned dimension) in one subdomain

PMLh: optimized Schwarz with PML and 2h overlap.
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Numerical & Spectral Examples

Is PML Scalable?

ω
2π

1
10h

J
10 Sweep Source Stolk PMLh

it m nx it m nx it m nx it m nx
20 20 2 4 4 14 4 4 26, 22 3 3 16 4 2 16
20 40 4 4 11 21 4 7 32, 25 4 4 18 4 3 18
20 80 8 4 40 50 4 3 24, 21 4 8 26 4 7 26
40 40 4 6 5 15 5 4 26, 22 5 3 16 5 2 16
80 80 8 6 28 38 6 14 46, 32 5 4 18 6 3 18

160 160 16 11 47 57 11 34 86, 52 6 6 22 6 5 22

ω : wavenumber, J : number of subdomains, it : GMRES iteration number

m : minimal number of pml grid layers on subdomain boundaries to reach the given
number of iterations

nx : number of grid layers including interior, overlap and pml, along x (partitioned
dimension) in one subdomain

PMLh : optimized Schwarz with PML and 2h overlap.
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