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DD, IGA and Schwarz

• Solid Modelling (CSG)
• Schwarz Additive Domain Decomposition and Isogeometric

Analysis
• Boundary Conditions
• 1D numerical results
• 2D examples and application to local zooming
• 3D heat and elasticity examples
• Parallelisation

• Current Research and Conclusion

All computations were done using GeoPDES 1.2

C. de Falco, A. Reali, and R. Vazquez. GeoPDEs: a research tool for Isogeometric Analysis of PDEs. Advances in Software

Engineering,40 (2011),1020-1034.
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Isogeometric Mapping
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Isogeometric Mapping
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Isogeometric Mapping a
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Example of Tensor Product Domain
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Solid Modelling

• Constructive Solid Geometry (CSG) relies on boolean operations of
primitives

Example of Boolean Union
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Solid Modelling

• Constructive Solid Geometry (CSG) relies on boolean operations of
primitives.

More Complex Construct: Union and Substraction
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IGA-alone

CSG is only one of, but an
important one, tool used by designers.

To define the isogeometric
mapping for these complex structures
one needs the latest results like

W. Wang, Y. Zhang, L. Liu and T.J.R. Hughes: Solid T-spline Construction
from Boundary Triangulations with Arbitrary Genus Topology, ICES 2012

Research on DD and IGA is growing, see the conference by L. Beirao da Vega this morning and the present Mini Symposium !
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IGA-alone

CSG is only one of, but an
important one, tool used by designers.

To define the isogeometric
mapping for these complex structures
one needs the latest results like

Another alternative:
• Using Domain Decomposition
Methods for CSG defined solids.

W. Wang, Y. Zhang, L. Liu and T.J.R. Hughes: Solid T-spline Construction
from Boundary Triangulations with Arbitrary Genus Topology, ICES 2012

L. Beirao da Veiga, D. Cho, L. Pavarino, and S. Scacchi. Overlapping
Schwarz methods for Isogeometric Analysis. SIAM J. N. A., 2012

Research on DD and IGA is growing, see the conference by L. Beirao da Vega this morning and the present Mini Symposium !
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Domain Decomposition and IGA

WHAT PROPERTIES DO WE DEMAND?
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• Non-matching meshes

• Easy parallelisation

Schwarz Additive Domain Decomposition fits
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DD and IGA

Consider the equation ∆u = 0,u|Ω = 0 on the domain given by the
logo of Domain Decomposition Organization, which is the union of a
circle and an overlapping rectangle: Ω = Ω1 ∪ Ω2.
The boundary of Ω is Γ = Γ1 ∪ Γ2, where Γ1 (resp. Γ2) is the boundary
of Ω1\Ω2 (resp. Ω2\Ω1).
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DD and IGA continuous case

Classic Reminder
Define a bilinear form a(·, ·) : H1(Ω)×H1(Ω)→ R and a functional
L : H1(Ω)→ R as:

a(w ,u) =

∫
Ω

gradw · gradudΩ, (1)

and
L(w) =

∫
Ω

wfdΩ +

∫
ΓN

whdΓ. (2)

Now the weak form reads as:

a(w ,u) = L(w), (3)
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DD continuous case

Since we assume the domain boundaries to be piecewise smooth and
the solutions belong to H1(Ωj) spaces, the Trace theorem provides us
with the definition of the trace operator:

Pi : H1(Ωj)→ L2(Γj
i)

uj → uj |Γj
i
.
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DD continuous case

There exist an extension operators :

Ei : H1(Γj
i)→ H

1(Ωi)

vi → ui such that ui |Γj
i

= vi ,ui |Γi = g|Γi .

Here we assume that the conditions ui |Γj
i

= vi ,ui |Γi = g|Γi define some

continuous H1(Ωi) function.
The continuous version of the ASDDM follows.
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DD continuous case

Given initial guesses u0
i ∈ H

1(Ωi), i = 1,2, such that
u0

i |Γj
i

= g|
Γj

i
, i , j = 1,2

While convergence conditions are not met:

Find un
i ∈ H1(Ωi) such that un

i |Γi = g|Γi and

ai(un
i − EiPiun−1

j , vi) = Li(vi)− ai(EiPiun−1
j , vi)

for any vi ∈ H1
0(Ωi), i , j = 1,2, i 6= j .

ASDDM algorithm
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DD and IGA, finite dimensional case

Given Vi ⊂ H1
0 (Ωi) = [Φ(i,j)(x

¯
) = Bj(F−1

i (x
¯
)); ], set u0

1 = 0,u0
2 = 0;

Given u0
i ∈ Vi , i = 1,2, such that u0

i lΓi
j = g|Γj , i = 1,2,

for i = 1,2; j = 1,2, i 6= j
While convergence conditions are not met:

Find un
i ∈ Vi such that un

i |Γi = g|Γi , and

ai(un
i − EiPiun−1

j , vi) = Li(vi)− ai(EiPiun−1
j , vi)

for any vi ∈ Vi .

ASDDM algorithm
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DD and IGA, algorithm

Figure : Operations performed on each iterative step in ASDDM with two
subdomains Ω1 and Ω2

Figure 1 illustrates the described ASDDM applied to a two domain
problem.
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DD and IGA

We test the convergence on

||um
1,Ω1∩Ω2

− um−1
1,Ω1∩Ω2

|| and ||um
2,Ω1∩Ω2

− um−1
2,Ω1∩Ω2

||

There is no notion of a global approximate solution, on the overlap.
We define the global solution by choosing the subdomain iterative
solution on each subdomain and any weighted average within the
overlap:

un = χ1vn + χ2wn,

where χ1 = 1 on Ω1\(Ω1 ∩ Ω2), χ2 = 1 on Ω2\(Ω1 ∩ Ω2) and
χ1 + χ2 = 1 on Ω1 ∩ Ω2.
This approach extends easily to multi-patched domain decomposition.
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Overlapping Schwarz and BC

Construction of the Trace Operator
We tested two approaches.

. Computation in the parametric space

. Computation in the physical space
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Parametric space approach

Pre-Image computation
Overlapping boundaries are trimming curves in the parameteric space.

Given any point (x , y) on the boundary Γi
j of Ωj : compute its

pre-image coordinates (ξ, η) in the parametric space Ω̂i .

Evaluate the solution um
i at that given (ξ, η) point at each iteration.
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Physical space approach

Second approach : work only in the physical space.

The solution ui in the domain Ωi is tabulated at some mesh
coordinates (X,Y) (say, integration points).
For any point (x , y) at which this solution is to be evaluated (the
integration points of the boundary of the sub-domain Ωj ) we interpolate
by linear or cubic polynomials.

This does not affect the rate of the iterative convergence significantly.
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Non-homogeneous Dirichlet BC in IGA

In both approaches we have a discrete collection of values on the
boundary Γj

i
We still have to convert this information into boundary B-spline
degrees of freedom.
We considered two methods:
Least-square approximation of the Dirichlet BC
Quasi Interpolation

There are also other approaches to impose the Dirichlet boundary
conditions such as local least-squares (Govindjee et All.) or Nitsche’s
method (Harari)
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Non-homogeneous Dirichlet BC in IGA

Least-squares approximation of the Dirichlet BC

Find such coefficients {q̃i}
Nh+Nb

h
i=Nh+1 that minimize the following integral:

min
{qi}

Nh+Nb
h

i=Nh+1

∫
ΓD

(g(x)−
Nh+Nb

h∑
Nh+1

qiφi(x))2dΓ.

In practice we will compute the integral using numerical formula, such
as Gaussian quadrature, hence x will be computed at a predetermined
collection of values , in the parametric domain.
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Non-homogeneous Dirichlet BC in IGA

Quasi interpolation of the Dirichlet BC

Consider a point-wise approximation of g(x).

Assume that the "intersectting" boundary Γ corresponds
to one side of the parametric domain with N degrees of freedom.

Given N points on this boundary, solve the system of linear equations:

N∑
j=1

qjφj(xi , yi) = g(xi , yi), i = 1 . . .N.

Applying the same algorithm to all the sides of the domain where the
Dirichlet BC are imposed, gives the value of the corresponding
degrees of freedom.
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Non-homogeneous Dirichlet BC in IGA

Quasi interpolation of the Dirichlet BC

Take {(xi , yi)}Ni=1 as the images of the centers of the knot spans
⇒ they are uniformly distributed in the parametric space.

These points may be chosen in different ways (e.g., uniform chord
length).

One of the open questions we are interested in is to choose these
points optimally, given the geometry.
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Dirichlet BC, 1D example

1D Domain Decomposition example :
two overlapping domains, non-matching grid.

∆u = −1,

u(0) = u(1) = 0.
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Dirichlet BC, 1D example: Hypotheses and Notations

Uniform open knot vectors : Ξ1 = [0, . . . β] and Ξ2 = [α, . . .1] ;
B-splines of degree p1 and p2 on the subdomains Ω1 and Ω2,
respectively.;Nh1 and Nh2, the resp. numbers of degrees of freedom
The mapping F is the identity mapping,( parametric space and physical
space are the same)

Let v (resp. w) be the solution on Ω1 (resp. Ω2) .Formally we
discretize:

vn
xx = f on Ω1, vn(0) = 0, vn(β) = wn−1(β). (4)

wn
xx = f on Ω2,wn(0) = 0,wn(α) = vn−1(α). (5)
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1D example: Construction of the Iteration Matrix

The basis functions are numbered by the order of the knot vectors.
Only the first and last basis functions are interpolatory, and all the
others vanish at the boundary t = 0 and t = 1.

Consider subdomain Ω1. The first (resp. last )basis function satisfies
φ1(0) = 1, (resp. φNh1(β) = 1 .)
The approximation operators Ai are the identities.

Given the solution w̃n−1 =
∑Nh2

i=1 ψiwn−1
i at boundary point β we project

it on the second subdomain:
vn

Nh1
= P1(w̃n−1(β)), where P1 is the trace operator.

The same reasoning applies on Ω2.
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1D example,Construction of the Iteration Matrix

Denote the vector of degrees of freedom of the solution w̃ (resp. ṽ) as
w, (resp. v.)

We can now build a matrix representation of the iterations .
The degree of B-splines on Ω2 is p2 thus there are no more than p2 + 1
non-zero basis functions ψi at the point β.
We may use different trace operators in order to project the solution on
the subdomain Ω2 onto the boundary Γ2

1 of the subdomain Ω1.

We will consider both cases: the exact trace operator and the
interpolation trace operator
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1D example, Iteration Matrix , Pre-Image

For this trivial trace operator, the value vn
Nh1

we get is:
vn

Nh1
= P1(w̃n−1(β)), where P1 is the trace operator.

The operator matrix for the boundary of the Ω1 subdomain is:

vn
Nh1

= P1(w̃n−1(β)) = Pe
1 ·



0
.
.
.

wn−1
i

wn−1
i+1
.
.
.

wn−1
i+p2
.
.
.
0



=


0 . . . 0 0 . . . 0 . . . 0
0 . . . 0 0 . . . 0 . . . 0
.
.
. . . .

.

.

.
.
.
. . . .

.

.

. . . .

.

.

.
0 . . . ψi (β) ψi+1(β) . . . ψi+p2

(β) . . . 0

 ·



0
.
.
.

wn−1
i

wn−1
i+1
.
.
.

wn−1
i+p2
.
.
.
0



where Pe
1 ∈ RNh1×Nh2 .
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1D example, Iteration Matrix , Pre-Image

Denote by A1 the stiffness matrix for the first subdomain. We partition
the sets of indices of basis functions J = {1,2, . . . ,Nhj}, j = 1,2 into
two subsets. The subset I ⊂ J of the inner degrees of freedom and
B ⊂ J of the boundary degrees of freedom.
In the one dimensional case B = {1,Nhj} and
I = J \{1,Nhj} = {2,3, . . . ,Nhj − 1}, j = 1,2.

The restriction of the stiffness matrix corresponding to the inner
degrees of freedom is A1(I, I).

When we impose the Dirichlet boundary conditions on some of the
degrees of freedom, we have to substract the corresponding values
from the degrees of freedom of the basis functions {φ}Nh1

i=Nh1−k which
support intersects with the support of φNh1 . This corresponds to the
thickness of the interface in standard IGA-DD methods ...
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1D example, Iteration Matrix , Pre-Image

Now the discretized equation for the subdomain Ω1 can be rewritten as:

1 0 . . . 0 0
0 A1(I, I) 0
0 0 . . . 0 1

 · vn =

0
f1
0

+

1 . . . 0
−A1(I,B)

0 . . . 1

 ·

·


0 . . . 0 0 . . . 0 . . . 0
0 . . . 0 0 . . . 0 . . . 0
... . . .

...
... . . .

... . . .
...

0 . . . ψi(β) ψi+1(β) . . . ψi+p2(β) . . . 0

 ·wn−1,

(6)

where the vector f1 corresponds to the inner degrees of freedom of the
first subdomain.
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1D example, Iteration Matrix , Pre-Image
Exactly the same reasoning can be applied to the second subdomain Ω2 to get the following discretized equation:

1 0 . . . 0 0
0 A2(I, I) 0
0 0 . . . 0 1

 · wn =

0
f2
0

 +

1 . . . 0
−A2(I,B)

0 . . . 1

 ·

·


0 . . . φj (α) φj+1(α) . . . φj+p1

(α) . . . 0

.

.

. . . .

.

.

.
.
.
. . . .

.

.

. . . .

.

.

.
0 . . . 0 0 . . . 0 . . . 0
0 . . . 0 0 . . . 0 . . . 0

 · vn−1
.

(7)

We regroup all the definitions and steps :

P =



O

0 . . . 0 . . . 0 . . . 0
0 . . . 0 . . . 0 . . . 0
.
.
. . . .

.

.

. . . .

.

.

. . . .

.

.

.
0 . . . ψi (β) . . . ψi+p2

(β) . . . 0
0 . . . φj (α) . . . φj+p1

(α) . . . 0

.

.

. . . .

.

.

. . . .

.

.

. . . .

.

.

.
0 . . . 0 . . . 0 . . . 0
0 . . . 0 . . . 0 . . . 0

O


=

(
O P̃1
P̃2 O

)
,

(8)

with Pe
1 ∈ RNh1×Nh2 , Pe

2 ∈ RNh2×Nh1 .
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1D example, Iteration Matrix , Pre-Image

For the stiffness matrices we have:

A =


1 . . . 0
0 A1(I, I) 0
0 . . . 1

O

O
1 . . . 0
0 A2(I, I) 0
0 . . . 1

 =

(
Ã1 O
O Ã2

)
,

with Ã1 ∈ RNh1×Nh1 , Ã2 ∈ RNh2×Nh2 ,

f =


0
f1
0
0
f2
0

 ,

Adir =


1 . . . 0
−A1(I,B)

0 . . . 1
O

O
1 . . . 0
−A2(I,B)

0 . . . 1

 =

(
Ãdir1 O

O Ãdir2

)
,

with Ãdir1 ∈ RNh1×Nh1 , Ãdir2 ∈ RNh2×Nh2 ,
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1D example, Iteration Matrix , Pre-Image

Let us denote the vector of degrees of freedom of the “whole”

approximate solution ũn as un =

(
vn

wn

)
. Now, we can unite the two

equations (6) and (7) into a single matrix equation

A · un = f + Adir · P · un−1, (9)

The iterative scheme is given by:(
Ã1 O
O Ã2

)
· un = f +

(
Ãdir1 O

O Ãdir2

)
·
(

O Pe
1

Pe
2 O

)
· un−1 =

f +

(
O Ãdir1Pe

1
Ãdir2Pe

2 O

)
· un−1,

(10)
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1D example, Iteration Matrix ,Physical Space
Here we have a simple linear operator.
The algorithm works as was explained above: consider the first subdomain Ω1 = [0, β). In order to construct a linear
interpolation of the solution w̃n−1 at the point η = β we need to find the knot span [ηi , ηi+1) which contains β. We take the
values of the function w̃n−1 at the ends of this chosen span interval w̃n−1(ηi ) and w̃n−1(ηi+1) and their weighted sum:

vn
Nh1

=
β − ηi

ηi+1 − ηi
w̃n−1(ηi ) +

ηi+1 − β
ηi+1 − ηi

w̃n−1(ηi+1).

We see that the linear interpolation trace operator is, actually, a convex sum of the two exact interpolation operators
corresponding to the points ηi and ηi+1:

P l
1 =

β − ηi

ηi+1 − ηi
Pe(ηi ) +

ηi+1 − β
ηi+1 − ηi

Pe(ηi+1). (11)

Consequently, the matrix of this interpolation trace operator can be obtained as the convex sum of the matrices of the exact trace
operators at the points ηi and ηi+1.

P l
1 =

β − ηi

ηi+1 − ηi


0 . . . 0 0 . . . 0 . . . 0
0 . . . 0 0 . . . 0 . . . 0
.
.
. . . .

.

.

.
.
.
. . . .

.

.

. . . .

.

.

.
0 . . . ψi (ηi ) ψi+1(ηi ) . . . ψi+p2

(ηi ) . . . 0



+
ηi+1 − β
ηi+1 − ηi


0 . . . 0 0 . . . 0 . . . 0
0 . . . 0 0 . . . 0 . . . 0
.
.
. . . .

.

.

.
.
.
. . . .

.

.

. . . .

.

.

.
0 . . . ψi+1(ηi+1) ψi+2(ηi+1) . . . ψi+p2+1(ηi+1) . . . 0

 .
(12)
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1D example, Iteration Matrix ,Physical Space

The iterative scheme is now:

(
Ã1 O
O Ã2

)
· un = f +

(
Ãdir1 O

O Ãdir2

)
·
(

O P l
1

P l
2 O

)
· un−1 =

f +

(
O Ãdir1P l

1
Ãdir2P l

2 O

)
· un−1,

(13)

where
P l

2 =
α− ξj

ξj+1 − ξj
Pe(ξj) +

ξj+1 − α
ξj+1 − ξj

Pe(ξj+1). (14)

and α belongs to the knot span [ξj , ξj+1)
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Dirichlet BC, 1D example

1D example using the parametric space approach
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Dirichlet BC, 1D example

Convergence of the one-dimensional SADDM with non-zero initial
guesses. ṽ0(β) = β and w̃0(α) = α
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1D example and Overlapping

Iteration speed vs % of overlapping of domains.
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DD iteration and degree of approximation

The impact of the degree p of the B-splines on the iterative
convergence.
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Numerical Results

2D numerical results:

• Zooming DD convergence vs. analytical solutions
• Zooming DD convergence in a singular case
• Zooming: approximation of singular derivative
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Analytical example, zoom and convergence

Let Ω be a circle of radius 3, u = sin(x2 + y2 − 9) is the solution of

−∆u = sin(x2 + y2 − 9)− 4cos(x2 + y2 − 9),

u|∂Ω=0.

Apply zooming by considering Ω as a union of an annulus and a
square. Ω = Ωannulus ∪ Ωsquare.
F. Hecht, A. Lozinski and O. Pironneau, Numerical Zoom and the Schwarz Algorithm, D. D. Methods in Science and Eng. XVIII,
Springer Verlag 2009, 63-74.
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Analytical example, zoom and convergence

The numerical solution:
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Analytical example, zoom and convergence

L2-error for different degrees p of the B-splines as a function of the
mesh size.
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Example of zoom: singularity at the corner

The problem:
4u = 0 in Ω,

u = 0 on Γ1 ⊂ ΓΩ = ∂Ω; u = θ(α− θ) on Γ2 = ΓΩ\Γ1, α =
3π
2
,

Ω = {(ρ, θ) ∈ R|0 ≤ ρ ≤ 3;−π
2
≤ θ ≤ π}.
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Example of zoom: singularity at the corner

The exact solution is given by the series:

uex (ρ, θ) =
9
π

∑
n=1,3,5,...

1
n3

(ρ
r

) 2n
3 sin

(
2nθ
3

)
.
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Example of zoom: singularity at the corner

Domain Decomposition: Ω = Ωout ∪ Ωzoom,

49 / 61



Example of zoom: singularity at the corner

Domain Decomposition: Ω = Ωout ∪ Ωzoom,
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Example of zoom: singularity at the corner

Projection and non-homogeneous Dirichlet BC.
In this example we used the exact projection method and we imposed
the Dirichlet boundary conditions by the least-squares method.

Exact solution is r1/3, and our result coincides with this value.
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Example of zoom: singularity at the corner

The solution being in H1+ε(Ω) and not in H2(Ω), we get a convergence
rate that does not improve with p
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Numerical Results

3D examples:

• Heat and elasticity problems
• Parallelisation
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3D examples
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3D examples

Chain of cubes with the analytical solution sin(x + y + z).
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3D and Parallelisation

In order to solve "real 3D" examples we implemented a parallel version
of the code using MatLab ( not easy for shared data).
Our solution:
use unrelated variables to perform the computations on each domain
at every iteration and synchronize the solutions between the iterations.

Matlab implementation
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3D and Parallelisation

180o hollow pipe, defined by 8 overlapping domains, elasticity model
under uniform field force.

"Unit" Patch :
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180o hollow pipe, defined by 8 overlapping domains, elasticity model
under uniform field force.
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3D and Parallelisation

180o hollow pipe, defined by 5 overlapping domains, elasticity model
under uniform field force.
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Final Remarks I

DD on unmatching grids/mapping provides a powerful and natural tool
for IGA.

Parallelisation is easy and effective : on a quad core with 8 threads we
have an acceleration factor of 4, using GEOPDEs.

To complete it we need to study:

-Dirichlet BC on trimmed surface patches.

-Preconditioning for very large problems.

-Incompressibility etc.
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Final Remarks I I

But Boolean operations are not limited of union and intersections,
there also subtractions....

Hence we need to extend our method to Chimera type algorithm....
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THANKS

Thank you for your attention!
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